Agrégation de Mathématiques, Université de Nice Sophia-Antipolis,

Panorama et TD, Année 2005-2006

Intégrale à Paramètre.

Etude de $\int_a^b f(t,x) \, dt$ dans le cadre de l'intégrale de Riemann

Soit U un ouvert de \mathbb{R}^n , E un espace de Banach, a < b deux réels et $f: [a, b] \times U \to E$.

On s'intéresse à la régularité de $\Phi: U \to E$ définie par $\Phi(x) = \int_a^b f(t,x) dt$.

Th. 1, Résultat de continuité : On suppose que f est continue sur $[a,b] \times U$. Alors Φ est continue sur U.

Th. 2, Résultat de dérivation : On suppose que n=1, que f est continue et admet une dérivée partielle par rapport à la seconde variable (ici x) telle que $\partial_x f$ soit continue sur $[a,b] \times U$.

Alors Φ est de classe C^1 sur U et $\Phi'(x) = \int_a^b \partial_x f(t,x) dt$ pour tout $x \in U$.

Exercice 1 [Cours, Dvlpt] (Continuité et dérivation dans le cadre de Riemann)

- 1) On cherche à démontrer le Th. 1.
- a) Rappeler la définition de l'uniforme continuité d'une application g entre deux espaces métriques (F,d) et (G,δ) .
- b) Soit $x \in U$ et V un voisinage compact de x dans U. Conclure en majorant $\|\Phi(x) \Phi(y)\|$ pour y assez proche de x dans V.
 - 2) On cherche à démontrer le Th. 2.
- a) Rappeler l'inégalité des accroissements finis pour $g:[a,b]\to F$ avec F un e.v.n.
- b) Soit $x \in U$ et $\alpha < \beta$ tels que $x \in [\alpha, \beta] \subset U$. Ecrire (après l'avoir justifier) l'uniforme continuité de $\partial_x f$ sur $[a, b] \times [\alpha, \beta]$.
- c) A t fixé dans [a, b], on définit $\Gamma_t(y) = f(t, y) y \partial_x f(t, x)$. Soit $\varepsilon > 0$. Montrer qu'il existe $\eta > 0$ tel que si $|x y| \le \eta$, alors $\|\Gamma_t(x) \Gamma_t(y)\| \le \varepsilon |x y|$ pour tout $t \in [a, b]$.

En déduire une majoration de $\left\| \frac{\Phi(x+h) - \Phi(x)}{h} - \int_a^b \partial_x f(t,x) dt \right\|$ pour h assez petit, et conclure.

Remarque : cet exercice peut servir de développement pour les leçons 208 (Utilisation de la continuité uniforme) et 239 (Intégrale à paramètre).

Exercice 2 (Calcul d'une intégrale)

On pose $G(x,y) = \frac{2}{\pi} \int_0^{\pi/2} \ln(x \sin^2 \theta + y \cos^2 \theta) d\theta$ pour x, y > 0.

- a) Calculer les dérivées partielles de G.
- b) A y fixé, on pose F(x) = G(x, y). Montrer que F est C^1 sur $]0, +\infty[$ et obtenir que $F(x) = 2\ln(\sqrt{x} + \sqrt{y}) + C$ pour $x \neq y$ avec C une constante..
- c) En déduire la valeur de G(x,y) pour tout x,y>0.

Exercice 3 (Un exemple classique)

Soit $f \in C^{\infty}(\mathbb{R}, \mathbb{R})$. On définit $G:]0, +\infty[\to \mathbb{R} \text{ par } G(x) = \frac{f(x) - f(0)}{x} \text{ si } x \neq 0.$

- a) Quelle valeur faut-il pour G(0) afin que G soit continue sur $[0, +\infty[$?
- b) Exprimer G comme une intégrale dépendant du paramètre x et en déduire que G est C^{∞} sur $[0, +\infty[$. Calculer $G^{(n)}(0)$.

Exercice 4 (Calcul de la Gaussienne)

Soit $g: [0, +\infty[\to \mathbb{R} \text{ définit par } g(x) = \int_0^1 \frac{e^{-(t^2+1)x^2}}{1+t^2} dt.$

- a) Montrer que g est C^1 et en déduire un calcul de g(x) en fonction de $f(x) = \int_0^x e^{-t^2} dt$.
- b) En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

Etude de $\int_{u(x)}^{v(x)} f(t,x) dt$ dans le cadre de l'intégrale de Riemann

Soit U un ouvert de \mathbb{R} , E un espace de Banach, a < b deux réels et $f: [a,b] \times U \to E$. Soit $u,v:U\to]a,b[$.

On s'intéresse à la régularité de $\Phi: U \to E$ définie par $\Phi(x) = \int_{u(x)}^{v(x)} f(t, x) dt$.

Th. 3, Résultat de dérivation : On suppose que f est continue et admet une dérivée partielle par rapport à la seconde variable (ici x) telle que $\partial_x f$ soit continue sur $[a,b] \times U$. On suppose de plus que u et v sont dérivables.

Alors Φ est de classe C^1 sur U et $\Phi'(x) = f(v(x), x)v'(x) - f(u(x), x)u'(x) + \int_{u(x)}^{v(x)} \partial_x f(t, x) dt$ pour tout $x \in U$.

Exercice 5 [Cours] (Dérivation avec bornes variables)

On cherche à démontrer le Th. 3.

- a) Soit $H:]a,b[^2\times U\to E$ définie par $H(u,v,x)=\int_u^v f(t,x)\,dt$. Etudier les dérivées partielles de H. En déduire que H est différentiable sur $]a,b[^2\times U.$
- b) On pose $\theta(x) = (u(x), v(x), x)$. Exprimer Φ' en fonction de dH, θ et θ' et conclure.

Etude de $\int_a^b\,f(t,x)\,dt$ pour une intégrale généralisée

Soit U un ouvert de \mathbb{R}^n , E un espace de Banach, $[a,b] \subset \overline{\mathbb{R}}$ et $f:]a,b[\times U \to E.$

On s'intéresse à la régularité de $\Phi: U \to E$ définie par $\Phi(x) = \int_a^b f(t, x) dt$.

Th. 4, Résultat de continuité : On suppose que f est continue sur $]a,b[\times U$ et qu'il existe une fonction positive g telle que $\int_a^b g$ converge et vérifiant $||f(t,x)|| \leq g(t), \ \forall (t,x) \in]a,b[\times U$. Alors Φ est bien définie et est continue sur U.

Th. 5, Résultat de dérivation : On suppose que n=1, que f est continue et admet une dérivée partielle par rapport à la seconde variable (ici x) telle que $\partial_x f$ soit continue sur $]a,b[\times U]$. On suppose que pour tout $x\in U$, $\Phi(x)$ converge et qu'il existe une fonction positive g telle que $\int_a^b g$ converge et vérifiant $\|\partial_x f(t,x)\| \leq g(t), \ \forall (t,x)\in]a,b[\times U]$.

Alors Φ est de classe C^1 sur U et $\Phi'(x) = \int_a^b \partial_x f(t,x) dt$ pour tout $x \in U$.

Remarque : On a rarement des majorations par une fonction g valables sur tout U. Comme la continuité et la dérivation sont des propriétés locales, il suffit d'avoir cette majoration localement pour conclure.

Exercice 6 [Cours] (Continuité et dérivabilité pour les intégrales généralisées à paramètre)

- 1) On cherche à démontrer le théorème 4.
- a) Montrer que Φ est bien définie sur U.

- b) Pour $a_n \to a$ et $b_n \to b$ avec $a < a_n < b_n < b$, montrer que $\int_{a_n}^{b_n} f(t, x) dt$ converge uniformément sur U vers $\int_a^b f(t, x) dt$.
- c) Conclure.
 - 2) Montrer de même le théorème 5.

Exercice 7 (Calcul d'une intégrale)

Pour
$$x > 0$$
, on pose $G(x) = \int_0^{+\infty} \frac{e^{-tx} - e^{-t}}{t} dt$.

- a) Montrer que G est bien définie, puis que G est dérivable sur $]0, +\infty[$.
- b) Calculer G'(x).
- c) En déduire la valeur de G, puis celle de $I(a,b) = \int_0^{+\infty} \frac{e^{-at} e^{-bt}}{t} dt$ pour a, b > 0.

Remarque : l'intégrale I(a,b) peut aussi se calculer à l'aide de la première formule de la moyenne (voir Gourdon).

Annexe : Etude de $\int_a^b f(t,x) dt$ dans le cadre de l'intégrale de Lebesgue

On rappelle les résultats suivants qui sont des conséquences du théorème de convergence dominée.

Soit (X, d) un espace métrique, $x_0 \in X$, (T, \mathcal{B}, μ) un espace mesuré et $f: T \times X \to \mathbb{R}$.

On s'intéresse à la régularité de $\Phi: X \to \mathbb{R}$ définie par $\Phi(x) = \int_T f(t,x) \, d\mu(t)$.

Th. 6, Résultat de continuité : On suppose que

- i) pour tout $x \in X$, $t \mapsto f(t, x)$ est μ intégrable,
- (ii) pour presque tout $t \in T$, f est continue au point x_0 par rapport à la variable x,
- (ii) il existe $g \in L^1_\mu$ tel que $|f(t,x)| \leq g(t), \ \forall x \in X$, p.p. $t \in T$.

Alors Φ est continue en x_0 .

- Th. 7, Résultat de dérivation : On suppose que X est un intervalle ouvert de $\mathbb R$ et que
 - i) pour tout $x \in X$, $t \mapsto f(t, x)$ est μ intégrable,
 - (ii) pour presque tout $t \in T$, f admet sur X une dérivée partielle en x_0 par rapport à x,
 - iii) il existe $g \in L^1_\mu$ tel que $|\partial_x f(t,x)| \leq g(t), \ \forall x \in X$, p.p. $t \in T$.

Alors $t \mapsto \partial_x f(t, x_0) \in L^1_\mu$, Φ est dérivable en x_0 et $\Phi'(x_0) = \int_T \partial_x f(t, x_0) d\mu(t)$.

Bibliographie:

- Gourdon (ex 4)
- Pommellet (ex 1, ex 6)
- Précis d'analyse-géométrie, tome 7 (ex 2 et 3)
- Ramis, Odoux, Deschamps, tome 4 (ex 5)
- Zuily, Queffélec (ex 7)

Remarque : D'autres séances feront intervenir les intégrales à paramètres, à savoir les séances sur la transformation de Fourier, la transformation de Laplace et les séances de développements : Méthode de Laplace, Prolongement de la fonction Γ d'Euler et Méthode de la phase stationnaire.