Agrégation de Mathématiques, Université de Nice Sophia-Antipolis,

Travail Semaine Février, Année 2005-2006

Exercice 1 (CVU sur le bord)

Soit Ω un ouvert connexe borné de \mathbb{C} et $f_n \in H(\Omega) \cap C(\overline{\Omega})$. On suppose que $(f_n)_n$ converge uniformément sur $\partial\Omega$. Montrer que $(f_n)_n$ converge uniformément sur Ω .

Exercice 2 (Théorème ergodique)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ continue et de période (0,1) et (1,0). Soit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ et $b \in \mathbb{R}$. Montrer que $\lim_{T \to +\infty} \frac{1}{T} \int_0^T f(t, \alpha t + b) \, dt = \iint_{[0,1]^2} f(x,y) \, dx \, dy.$

Exercice 3 (Topologie et Algèbres normées)

Soit A une \mathbb{R} – Algèbre munie d'une norme telle que $||xy|| \le ||x|| \, ||y||$, unitaire et complète.

- 1) Montrer que si $x \in A$, ||x|| < 1, alors $\mathbb{I}_A x$ est inversible dans A.
- 2) Montrer que $\{x \in A; x \text{ est inversible dans } A\}$ est un ouvert de A.
- 3) Soit $\varphi: A \to \mathbb{R}$ un morphisme d'algèbre. Montrer que φ est continue.
- 4) Soit E un \mathbb{R} e.v. de Banach, $u \in \mathcal{L}_c(E)$. Montrer que $\mathrm{Sp}(u) = \{\lambda \in \mathbb{R} \; ; \; u \lambda Id \notin \mathcal{G}l_c(E)\}$ est compact.

Exercice 4 (Lemme de Milnor)

Soit K un compact de \mathbb{R}^n , Ω un ouvert de \mathbb{R}^n , C un ouvert convexe borné tel que $K \subset C \subset \overline{C} \subset \Omega$. Soit $u: \Omega \to \mathbb{R}^n$ de classe C^{∞} , on pose $u_t = Id + tu$ pour $t \in \mathbb{R}$.

- 1) Montrer qu'il existe $\alpha > 0$ tel que si $|t| < \alpha$, alors pour tout $x \in \overline{C}$, $du_t(x)$ est inversible.
- 2) Montrer que si $|t| < \alpha$, alors u_t est un C^{∞} -difféomorphisme de C sur son image.
- 3) Montrer que $\det(du_t(x))$ est de signe constant sur $]-\alpha,\alpha[\times C]$.
- 4) On note λ la mesure de Lebesgue. Montrer que $t\mapsto \lambda(u_t(C))$ est un polynôme sur $]-\alpha,\alpha[$ de degré $\leq n.$

Exercice 5 (Théorème de relèvement)

Soit $\varphi:[a,b]\to S^1$ continue.

- 1) Montrer qu'il existe $\tilde{\varphi}:[a,b]\to\mathbb{R}$ continue telle que $\varphi(t)=e^{i\tilde{\varphi}(t)}$. On appelle $\tilde{\varphi}$ un relèvement de φ . Pour cela, on commencera par montrer que si $I_{\varepsilon}\subset[a,b]$ est un intervalle de longueur ε tel que $\varphi(I_{\varepsilon})$ est de diamètre ≤ 1 , alors sur I_{ε} , il existe un relèvement $\tilde{\varphi}_{I_{\varepsilon}}$.
 - 2) Montrer que $\tilde{\varphi}$ est unique à une constante de la forme $2\pi n$ près $(n \in \mathbb{Z})$.
 - 3) Montrer que si φ est de classe C^k , alors $\tilde{\varphi}$ est de classe C^k .

Remarque : Ceci s'étend à $\varphi:X\to S^1$ où X est un e.m. connexe, localement connexe par arcs et simplement connexe.

Exercice 6 (Continuité uniforme de l'intégrale de Riemann)

- 1) Soit (X, μ) un espace mesuré.
- a) Soit $f \geq 0$ et intégrable de X dans \mathbb{R} . On pose $f_n = \inf(f, n)$. Montrer que $\int_X f_n \underset{n \to +\infty}{\longrightarrow} \int_X f$.
- b) Soit $\varepsilon > 0$. Montrer qu'il existe $\delta > 0$ tel que pour tout A mesurable tel que $\mu(A) < \delta$, alors $\int_A f \, d\mu \le \varepsilon$.
- 2) On prend $X = \mathbb{R}$ et μ la mesure de Lebesgue. On pose $F(x) = \int_0^x f(t) dt$, $x \in \mathbb{R}$. Montrer que F est uniformément continue.

Exercice 7 (Théorème Maximal et théorème de dérivation de Lebesgue)

Soit $f \in L^1_{loc}(\mathbb{R}^n)$. Pour r > 0, on pose $M_r f(x) = \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy$. On définit la fonction maximale par $Mf(x) = \sup_{r>0} M_r |f|(x)$. On note λ la mesure de Lebesgue.

- 1) a) Montrer que $(r, x) \mapsto M_r |f|(x)$ est continue.
- b) Montrer que Mf est mesurable sur \mathbb{R}^n .
 - 2) On pose $[f]_1 = \sup_{t>0} t\lambda\{x; |f(x)| > t\}.$
- a) Lemme : Si Ω est recouvert par des boules $B(x_j, r_j)$ et si $0 < c < |\Omega|$, alors il existe une suite finie de boules disjointes B_i de la famille $(B(x_j, r_j))$ telles que $c < 3^n \sum_{i=1}^k |B_i|$.
- b) Soit t>0. On pose $S=\{x\,;\,Mf(x)>t\}$. Pour tout $x\in S$, il existe $r_x>0$ tel que $M_{r_x}|f|(x)>t$. Utiliser ceci pour montrer que $c<\frac{3^n}{t}[f]_1$ pour c<|S|.
- c) Conclure au théorème maximal : $[Mf]_1 \leq 3^n [f]_1$.
 - 3) On cherche à montrer maintenant que pour p.p. x, $\frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) dy \underset{r\to 0}{\to} f(x)$.
- a) Montrer que l'on peut se ramener à $f \in L^1(\mathbb{R}^n)$, hypothèse que l'on fera dans la suite.
- b) Soit $\varepsilon > 0$. Il existe $u \in C_c^{\infty}(\mathbb{R}^n)$ tel que $||f u||_1 < \varepsilon$. Montrer que $\lambda \{x ; \overline{\lim_{r \to 0}} |M_r f(x) f(x)| > \varepsilon$
- $t\} \le \frac{3}{t}\varepsilon(3^n + 1).$
- c) En déduire que $\lambda\{x; \overline{\lim_{r\to 0}}|M_rf(x)-f(x)|>t\}=0$ pour tout t>0 et conclure.

Remarque: Les points pour lesquels on a la convergence s'appelle les points de Lebesgue.

Exercice 8 (Lemme de Riemann-Lebesgue via les translations)

- 1) Pour $1 \leq p < +\infty$, $f \in L^1(\mathbb{T})$, on pose $\tau_a(f) = f(\cdot -a)$ et $T_f(a) = \tau_a(f)$ application de \mathbb{R} dans $L^1(\mathbb{T})$. En utilisant la densité des fonctions continues dans $L^1(\mathbb{T})$, montrer que T_f est uniformément continue.
 - 2) Après avoir montré que $2|c_n(f)| \le ||f \tau_{\pi/n}(f)||_1$, conclure.

Indications:

Ex 1 : Critère de Cauchy et principe du maximum,

Ex 2 : Commencer par $f(x, y) = e^{2i\pi(nx+my)}$ puis par densité graçe à Féjer,

Ex 3.3: Si φ n'est pas identiquement nulle, montrer que $\varphi(\mathbb{1}_A) = 1$ et que si ||x|| = 1, alors $|\varphi(x)| < 1$ par l'absurde en utilisant le 3.1,

Ex 3.4 : Montrer que c'est un fermé, borné,

Ex 4.1 : utiliser le 3.1,

Ex 4.2: Utiliser le th. d'inversion globale,

Ex 5.1 : Comme $\varphi(I_{\varepsilon})$ est de diamètre < 2, on évite une demi-droite et peut trouver un log complexe. Ensuite, il faut recoller les différents intervalles,

Ex 7.2.a: Choisir un recouvrement fini de ω ouvert borné tel que $c < |\omega| \overline{\omega} \subset \Omega$, puis par récurrence on choisit une boule B_{i+1} de rayon maximal qui ne rencontre pas $B_1 \cup \cdots \cup B_i$,

 $Ex 7.3.b : \lambda\{x; \lim |M_r f(x) - f(x)| > t\} \leq \lambda\{x; \lim |M_r f(x) - M_r u(x)| > t/3\} + \lambda\{x; \lim |M_r u(x) - u(x)| > t/3\} + \lambda\{x; \lim |u(x) - f(x)| > t/3\}$ et penser à l'inégalité de Bienaymé-Tchebychev.

Bibliographie:

- Beck, Malick, Peyré, Objectif Agrégation (ex 4 et 8)
- \bullet Chambert-loir, Fermigier (ex 2, 5, 6)
- Gourdon (ex 3)
- Willem, Analyse Harmonique réelle (ex 7 et 8)