Questions choisies: Analyse & Probabilités - 1999.

Il est souhaitable de traiter la Question 1 chez vous....

On note H l'espace de Hilbert $\ell^2(\mathbb{N},\mathbb{C})$ muni du produit scalaire

$$\langle x, y \rangle = \sum_{j=0}^{+\infty} \bar{x}_j y_j,$$

et de la norme $||\cdot||$ associée. $\mathcal{L}(H)$ désigne l'espace des applications $T:H\to H$ linéaires continues, muni de la norme

$$||T||_{\mathcal{L}} = \sup\{||Tx||, ||x|| \le 1\}.$$

On admet que $(\mathcal{L}(H), ||\cdot||_{\mathcal{L}})$ est complet. Si $T \in \mathcal{L}(H)$, on dit que T est *inversible* s'il existe $S \in \mathcal{L}(H)$ tel que ST = TS = Id; et on note $T^* : H \to H$ par la formule

$$\langle Tx, y \rangle = \langle x, T^*y \rangle.$$

Question 1 : Soit $D: H \to H$ défini par : si $x = (x_j)_{j \in \mathbb{N}}$, alors $Dx = (x_{j+1})_{j \in \mathbb{N}}$.

- a) Déterminer Ker(D) et Im(D).
- b) Montrer que $D \in \mathcal{L}(H)$ et calculer $||D||_{\mathcal{L}}$.
- c) Montrer que si $T \in \mathcal{L}(H)$, $T^* \in \mathcal{L}(H)$ et $||T^*||_{\mathcal{L}} = ||T||_{\mathcal{L}}$.
- d) Déterminer l'adjoint D^* de D et vérifier que $DD^* = Id$.
- e) Si $\lambda \in \mathbb{C}$ est tel que $|\lambda| < 1$, on définit $x_{\lambda} = (\lambda^{j})_{j \in \mathbb{N}}$. Vérifier que $x_{\lambda} \in H$ et montrer que $Dx_{\lambda} = \lambda x_{\lambda}$.
- f) Montrer que si $g \in H$ est tel que $\langle g, x_{\lambda} \rangle = 0$ pour tout $|\lambda| < 1$, alors g = 0. En déduire que Vect $(x_{\lambda}, |\lambda| < 1)$ est dense dans H.

Question 2 : a) Démontrer que si $T, S \in \mathcal{L}(H)$, alors $||TS||_{\mathcal{L}} \leq ||T||_{\mathcal{L}}||S||_{\mathcal{L}}$.

- b) Montrer que si $N \in \mathcal{L}(H)$ et $||N||_{\mathcal{L}} < 1$, alors la série $\sum_{n \geq 0} (-N)^n$ est convergente. En déduire que $Id + N \in \mathcal{L}(H)$ est inversible.
- c) On suppose $T \in \mathcal{L}(H)$ inversible. Montrer que si $||N||_{\mathcal{L}}||T^{-1}||_{\mathcal{L}} < 1$, alors T + N est inversible.
- d) Démontrer l'existence de $m\in\mathbb{R}$ tel que, si $||N||_{\mathcal{L}}\leq \frac{1}{2||T^{-1}||_{\mathcal{L}}},$ on a :

$$||(T+N)^{-1}-T^{-1}+T^{-1}NT^{-1}||_{\mathcal{L}}\leq m||N||_{\mathcal{L}}^{2}.$$

Question 3 : Pour $T \in \mathcal{L}(H)$, on appelle spectre de T l'ensemble

$$\sigma(T) = \{ \lambda \in \mathbb{C}, \ T - \lambda Id \text{ n'est pas inversible } \},$$

et on dit que $\lambda \in \mathbb{C}$ est valeur propre de T s'il existe $x \in H$, $x \neq 0$ tel que $Tx = \lambda x$ (autrement dit, $\text{Ker}(T - \lambda Id) \neq \{0\}$). On définit aussi $\rho(T) = \sup\{|\lambda|, \ \lambda \in \sigma(T)\}$.

- a) Montrer que $\sigma(T)$ est un fermé de \mathbb{C} , qui contient les valeurs propres de T. Démontrer que $\rho(T) \leq ||T||_{\mathcal{L}}$.
- b) Déterminer le spectre $\sigma(D)$ de D (cf. Question 1).
- c) Caractériser $\sigma(T^*)$ en fonction de $\sigma(T)$. En déduire $\rho(T^*) = \rho(T)$.

Question 4 : Soit $x, y \in H$. On définit $f_{x,y} : \mathbb{C} \setminus \sigma(T) \to \mathbb{C}$ par $f_{x,y}(z) = \langle y, (zId - T)^{-1}x \rangle$.

- a) Montrer que $f_{x,y}$ est holomorphe sur $\mathbb{C} \setminus \sigma(T)$.
- b) Justifier que $\lim_{|z|\to+\infty} z f_{x,y}(z) = \langle y, x \rangle$.
- c) En déduire que $\sigma(T) \neq \emptyset$.