Agrégation de Mathématiques, Université de Nice Sophia-Antipolis,

TD, Année 2006-2007

Opérateurs compacts.

Soient E et F deux Banachs. On note B_E la boule unité fermée de E. On munit $\mathcal{L}(E, F)$ de la norme d'opérateur classique.

On dit que $T \in \mathcal{L}(E, F)$ est **compact** si $T(B_E)$ est relativement compacte.

On note $\mathcal{K}(E,F)$ l'ensemble des opérateurs compacts. On pose $\mathcal{K}(E)=\mathcal{K}(E,E)$.

On dit que $T \in \mathcal{L}(E, F)$ est de rang fini si dim $Im(T) < \infty$.

Exercice 1 (Propriétés de base sur les opérateurs compacts)

- 1) Montrer que $\mathcal{K}(E,F)$ est un s.e.v. fermé de $\mathcal{L}(E,F)$. (Utiliser les recouvrements.)
- 2) Montrer qu'un opérateur continu de rang fini est compact.
- 3) Montrer que si $T \in \mathcal{L}(E, F)$ est la limite d'opérateurs continus de rang finis de E dans F, alors $T \in \mathcal{K}(E, F)$.
- 4) Soit $T \in \mathcal{K}(E)$. Montrer que dim $Ker(Id T) < \infty$. (Montrer que $B_G \subset T(B_G)$ avec G = Ker(Id T).)

La réciproque du 3) est fausse en général, un opérateur compact n'est pas nécessairement limite d'opérateurs de rang finis. Elle est vrai par contre, si F est un Hilbert.

Pour le voir : Soit $\varepsilon > 0$, on pose $K = \overline{T(B_E)}$ et on recouvre K par $\bigcup_{i=1,\ldots,n} B(f_i,\varepsilon)$. On définit G l'e.v. engendré par les f_i et $T_{\varepsilon} = P_G \circ T$ avec P_G la projection orthogonale sur G. On montre alors que $||T_{\varepsilon} - T|| < 2\varepsilon$.

Exercice 2 (Autres exemples d'opérateurs compacts)

Soit $E = C([a, b], \mathbb{R}), K(x, y) \in C([a, b]^2, \mathbb{R})$ et l'opérateur T sur E défini par $T(u)(x) = \int_a^b K(x, y)u(y) dy$. Montrer que T est compact. (On utilisera Ascoli.)

Remarque : Soit Ω un ouvert de \mathbb{R}^N , $H = L^2(\Omega)$, $K(x,y) \in L^2(H \times H)$ et l'opérateur T sur H défini par $T(u)(x) = \int_{\Omega} K(x,y)u(y) \, dy$. Alors on peut montrer que T est compact.

(Pour cela, on commence par montrer que pour $u \in H$, $T(u) \in H$ et que T est continue. Ensuite, pour une suite u_n de la boule unité, on extrait une sous-suite notée encore $u_n \to u$ (On admet ici que dans un espace de Hilbert séparable, une suite bornée a une sous-suite qui converge faiblement). Pour cette sous-suite, on montre que $\lim T(u_n)(x) = T(u)(x)$. En utilisant Cauchy-Schwarz et le lemme de Fatou, on trouve alors que $\lim \int |T(u_n)|^2 dx = \int |T(u)|^2 dx$. On en déduit alors que $T(u_n) \to T(u)$. Ceci permet de conclure.)

Alternative de Fredholm : Si $T \in \mathcal{K}(E)$, alors on a $Im(Id - T) = Ker(Id - T^*)^{\perp}$ et aussi $Ker(Id - T) = \{0\}$ ssi Im(Id - T) = E.

L'ensemble résolvant de $T \in \mathcal{L}(E)$ est $R(T) = \{\lambda \in \mathbb{R} : (T - \lambda Id) \text{ est bijectif de } E \text{ sur } E\}$. Le spectre de T est le complémentaire de cet ensemble : $\sigma(T) = \mathbb{R} \setminus R(T)$.

On dit que λ est une **valeur propre** de T si $Ker(T - \lambda Id) \neq \{0\}$. On appelle alors $Ker(T - \lambda Id)$ l'espace propre associé à λ . On note VP(T) l'ensemble des valeurs propres. On pose finalement $\rho(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ le rayon spectral de T.

Exercice 3 (Propriétés de base sur le spectre d'un opérateur)

- 1) Soit $T \in \mathcal{L}(E)$. Si $\lambda \in R(T)$, alors $(T \lambda Id)^{-1} \in \mathcal{L}(E)$.
- 2) Soit $T \in \mathcal{L}(E)$. Montrer que $VP(T) \subset \sigma(T)$. Montrer qu'en dimension finie, on a égalité. Donner un exemple où on n'a pas égalité.

- 3) Soit $T \in \mathcal{L}(E)$. Montrer que $\sigma(T)$ est un ensemble compact et que $\sigma(T) \subset [-\|T\|, \|T\|]$.
- 4) Soit $T \in \mathcal{K}(E)$. Soit λ une valeur propre non nulle de T. Montrer que dim $Ker(T \lambda Id) < \infty$.

Exercice 4 (Propriétés complémentaires sur le spectre d'un opérateur)

- 1) Lemme : Soit $S \in \mathcal{K}(E)$ et $R \in \mathcal{L}(E)$, alors $S \circ T \in \mathcal{K}(E)$.
- 2) Soit $T \in \mathcal{K}(E)$ avec dim $E = \infty$.
- a) Montrer que $0 \in \sigma(T)$.
- b) Montrer que $\sigma(T) \setminus \{0\} = VP(T) \setminus \{0\}$. (Utiliser l'alternative de Fredholm.)
- c) On peut montrer aussi que l'on a l'une des situations suivantes : $\sigma(T) = \{0\}$ ou $\sigma(T) \setminus \{0\}$ est fini ou $\sigma(T) \setminus \{0\}$ est une suite qui tend vers 0.

Théorème du rayon spectral : Pour $T \in \mathcal{L}(E)$, $\rho(T) = \lim ||T^n||^{1/n}$.

On se place maintenant dans le cas E = F = H un Hilbert. Identifiant H et H', on peut considérer l'adjoint T^* , d'un opérateur $T \in \mathcal{L}(H)$, comme étant dans $\mathcal{L}(H)$.

On dit que T est autoadjoint si $T^* = T$, c'est-à-dire que (Tu, v) = (u, Tv) pour tout $u, v \in H$.

Exercice 5 (Lien entre $\rho(T)$ et ||T||)

Si $T \in \mathcal{L}(H)$ est autoadjoint, alors $\rho(T) = ||T||$. (Commencer par montrer que $||T^2|| = ||T||^2$.)

Exercice 6 (Propriétés de base sur les opérateurs autoadjoints)

- 1) Soit $T \in \mathcal{L}(H)$ autoadjoint. On pose $m = \inf_{\|u\|=1} (Tu, u)$ et $M = \sup_{\|u\|=1} (Tu, u)$. On veut montrer que $\sigma(T) \subset [m, M]$ et que $m, M \in \sigma(T)$.
- a) Soit $\lambda > M$. Poser $a(u, v) = (\lambda u Tu, v)$ et appliquer Lax-Milgram pour montrer que $\lambda Id T$ est bijectif.
- b) Appliquer Cauchy-Schwarz avec a(u,v) = (Mu Tu,v) pour montrer que $||Mu Tu|| \le C(Mu Tu,u)^{1/2}$ pour tout $u \in H$. En déduire que $M \in \sigma(T)$. Conclure.
 - 2) Montrer que si $T \in \mathcal{L}(H)$ autoadjoint tel que $\sigma(T) = \{0\}$, alors T = 0.

Exercice 7 (Diagonalisation des opérateurs compacts autoadjoints)

Soit H un Hilbert. On suppose que H est séparable (c'est-à-dire contenant un sous-ensemble dénombrable et dense). Soit T un opérateur autoadjoint compact. On va montrer que H admet une base Hilbertienne formée de vecteurs propres de T.

D'après l'exercice 4, on peut poser $(\lambda_n)_{n\geq 1}$ la suite des valeurs propres (distinctes) et non nulles. On pose $\lambda_0=0$. On pose $E_n=Ker(T-\lambda_n Id)$.

- 1) Montrer que les E_n sont deux à deux orthogonaux.
- 2) Soit F l'e.v. engendré par les E_n . Montrer que $T(F^{\perp}) \subset F^{\perp}$.
- 3) On pose alors $S = T_{|F^{\perp}}$. Il est autoadjoint, compact. Montrer que $\sigma(S) = \{0\}$. En déduire que $F^{\perp} = \{0\}$ et que F est dense dans H.
 - 4) Conclure.

Remarque : On peut montrer aussi que dans un espace de Hilbert séparable, T est compact équivaut à $(u_n \rightharpoonup u \Rightarrow T(u_n) \rightarrow T(u))$. En fait c'est vrai dans les Banach séparables et réfléxifs.

Bibliographie: Brézis (ex 1, 3, 4, 6, 7), Yoshida (ex 2), Chambert-Loir (ex 5)