TD sur la convergence des séries de Fourier

Soit $f \in L^2([0, 2\pi])$, on pose

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} f(x) dx, \ S_n(f) = \sum_{k=-n}^n c_n(f) e^{inx}, \ \sigma_n(f) = \frac{1}{n+1} \sum_{k=0}^n S_k(f).$$

- 1) Écrire $S_n(f)$ et $\sigma_n(f)$ sous la forme de convolution avec deux noyaux notés D_n (noyau de Dirichlet) et F_n (noyau de Fejer).
- 2) Vérifier que

$$||F_n||_{L^1} = 1,$$

et en conclure que $\sigma_n(f)$ converge uniformément vers f si f est continue et préiodique sur $[0, 2\pi]$.

- 3) Montrer que e^{inx} est une famille orthonormée de L^2 .
- 4) Déduire de la question 2 qu'elle est dense et donc que $S_n(f)$ converge vers f dans L^2 .
- 5) En conclure que pour tout $f \in L^2$

$$\int_0^{2\pi} f(x) e^{inx} dx \longrightarrow 0, \text{ quand } n \to \infty.$$

- 6) Soit $f \in L^p([0, 2\pi])$, prouver que $\sigma_n(f)$ converge vers f pour la norme de l'espace L^p .
- 7) Supposons que pour tout f continue, $S_n(f)(0)$ converge vers f(0).
- i) En utilisant le théorème de Banach-Steinhaus pour la suite de formes linéaires sur $C_{per}([0, 2\pi])$ données par $S_n(f)(0)$, prouver que

$$\sup_{n} \sup_{f \in C_{per}, |f| \le 1} |S_n(f)(0)| < \infty.$$

ii) Remarquer que

$$\sup_{f \in C_{per}, |f| \le 1} |S_n(f)(0)| = ||D_n||_{L^1}.$$

iii) Montrer que

$$||D_n||_{L^1} \longrightarrow \infty,$$

et conclure.