TD-Développement : simplicité de A_n pour $n \geq 5$ (d'après Perrin, Cours d'algèbre, Th. 8.1 p. 28)

Le groupe A_5 est simple.

- 1. Quels sont à permutation près les ordres des orbites d'un élément de A_5 ? Quel est le lien entre l'ordre d'un élément de A_5 et son nombre de points fixes? Combien y-a-t'il d'éléments de chaque ordre?
- 2. Montrer que tout sous-groupe distingué de A_5 contenant une permutation d'ordre k contient la partie P_k constituée par tous les éléments d'ordre k. (on montrera directement que deux éléments d'ordre 2 sont conjugués, et on utilisera le théorème de Sylow pour les ordres 3 et 5).
- **3.** Montrer que les seules réunions des parties $(P_k)_{k\geq 0}$ constituant des sous-groupe de A_5 sont $\{1\}$ et A_5 (utiliser 1). En déduire que A_5 est simple (utiliser 2).

Le cas $n \geq 5$.

- **4.** Montrer que deux cycles de même ordre sont conjugués dans \mathfrak{S}_n . En déduire que deux cycles de A_n d'ordre $\leq n-2$ sont conjugués dans A_n .
- 5. Montrer que les 3-cycles engendrent A_n (on montrera que les transpositions d'indices successifs engendrent \mathfrak{S}_n , puis on écrira un produit de deux telles transposition comme un produit de 3 cycles).
- **6.** Montrer que si un sous-groupe distingué de A_n contient un 3-cycle, il est égal à A_n (utiliser 4 et 5).
- 7. Soit σ un élément de A_n et η un 3-cycle de support (a, b, c). Montrer que $\sigma \eta \sigma^{-1}$ est un 3-cycle; quel est son support? En déduire que le support de $\eta^{-1}\sigma\eta\sigma^{-1}$ est inclu dans $\{a, b, c, \sigma(a), \sigma(b), \sigma(c)\}$.
- **8.** On suppose que $\sigma \neq 1$. Construire a, b, c distincts tels que $\{a, b, c, \sigma(a), \sigma(b), \sigma(c)\}$ ait cardinal au plus 5 et tel que $\eta^{-1}\sigma\eta\sigma^{-1}(b) \neq b$ (où $\eta = (a, b, c)$).
- 9. Soit H un sous-groupe distingué non trivial de A_n . Déduire de la question précédente l'existence d'un morphisme $A_5 \to A_n$ tel que $\phi^{-1}(H) \neq \{1\}$. En déduire que $\phi^{-1}(H) = A_5$ (utiliser 3) puis que $H = A_n$ (utiliser 6).