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Abstract

We study the derivation of a scalar conservation law with stochastic forcing starting from a
stochastic BGK model with a high-field scaling. We prove the convergence to a new kinetic
formulation where appears a modified Maxwellian. We deduce from it the existence of a weak
solution to the scalar conservation law with stochastic forcing. We establish that this solution
satisfies some Krushkov-like entropy relations.
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1 Introduction

In this paper, we are interested in the derivation of a solution to a scalar conservation law with
stochastic forcing of the following form:

du+ divx(B(x, u))dt = C(x, u)dWt, t ∈ (0, T ), x ∈ TN , (1.0.1)

from a stochastic BGK like model,

dF ε + divx(a(x, ξ)F ε)dt+
Λ(x)

ε
∂ξF

εdt =
1uε>ξ − F ε

ε
dt− ∂ξF εΦdW +

1

2
∂ξ(G

2∂ξF
ε)dt, (1.0.2)

when ε goes to 0.

This type of problem belongs to the class of problems of hydrodynamical limits. The historical
issue in that field goes back to the kinetic theory, first introduced by Maxwell and Boltzmann in
order to model rarefied gas. Indeed, adopting a statistical point of view, a gas can be described
by its density of particles fε, a function of time, position and velocity, satisfying at the mesoscopic
level, the Boltzmann equation

∂tfε(t, x, ξ) + v.∇xfε(t, x, ξ) =
Q(fε, fε)

ε
, t ∈ R+

t , x ∈ Rd
x, ξ ∈ Rn

ξ , (1.0.3)

where Q(fε, fε) is a collision operator. Formally in that case, we obtain the following hydrodynam-
ical limit: fε converges to a Maxwellian of parameter ρ(t, x), u(t, x) and T (t, x) such that those
three functions satisfy the Euler system. In other words, starting from the Boltzmann equation
at the mesoscopic level, we expect to obtain the Euler system at the macroscopic level. How-
ever, this derivation is actually still an open question and motivated the introduction of the BGK
model in [4], tough partial results have been established as for example in the case of the incom-
pressible Euler system for “well prepared initial data” of the asymptotic equations or solution to
the scaled Boltzmann equation with additional non uniform a priori estimates (see [?] for a more
complete state of the art). The idea of the BGK model is to replace the collision kernel by an
easier term which keeps some properties associated to the Boltzmann equation. Those models have
been then generalized by Perthame and Tadmor [16] to derive at the macroscopic level some scalar
conservation laws. More precisely, the BGK model that they investigate in [16] is the following:

(∂t + a(ξ).∂x)fε(t, x, ξ) =
1

ε

[
χuε(t,x)(ξ)− fε(t, x, ξ)

]
, (t, x, ξ) ∈ R+

t ×Rd
x ×Rξ (1.0.4)
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with uε(t, x) =

∫
R

fε(t, x, ξ)dξ and where χu(ξ) =

{
sgn u if (u− ξ)ξ ≥ 0,

0 if (u− ξ)ξ < 0.
At the macroscopic level, they derive the following multidimensional law

∂tu(t, x) +

d∑
i=1

∂xiAi(u(t, x)) = 0, (t, x) ∈ R+
t ×Rd

x, (1.0.5)

with Ai ∈ C1(R) and ai = A′i. Two main approaches are actually possible to get this scalar conser-
vation law from (1.0.4). The initial one in [16] is based on a use of BV compactness arguments in
the multidimensional case and compensated compactness arguments in the one dimensional case,
while the second one introduced later in [14] relies on what is called a kinetic formulation. It
consists in obtaining at the macroscopic level a kinetic equation involving a density-like function
whose velocity distribution is the equilibrium density.

Lately, the study of scalar conservation laws starting from BGK models at the mesoscopic level have
been pursued in various context: with boundary conditions in [15] and [?], with a discontinuous in
the space variable flux in [3], with a high-field scaling in [2] or again in a stochastic context in [10].
In this paper, we are interested in the last two contexts mentioned. First of all, let us say a word
about the stochastic one. Recently, the study of some conservation laws with stochastic forcing
has been a subject of growing interest (see [1], [6],[8], [9], [11], [12] or again [?] for the case of a
system). Indeed, the introduction of such terms can be justified in order to translate numerical and
empirical uncertainties. Moreover, it often offers the possibility to weaken assumptions and still
get results. The first result on an hydrodynamical limit starting from a BGK model in a stochastic
context is due to Hofmanova [10]. The idea in this paper is to use the notion of stochastic kinetic
formulation developed by Debussche and Vovelle in [6]. Certainly, it seems quite natural to adopt
this approach knowing that we can not get any pathwise L∞ a priori estimates due to the presence
of the white noise term.

What we intend to do here is to extend the above result to a stochastic BGK model containing a
force term with a high-field scaling. The deterministic version of this result has been established by
Berthelin, Poupaud and Mauser in [2]. However, due to the presence of the white noise terms, the
techniques adopted through the paper will be the ones developed by Debussche and Vovelle [6] and
Hofmanová [10] by proving the convergence to a kinetic formulation associated to (1.0.1). The scal-
ing adopted being different, some new difficulties are introduced and some additional assumptions
similar to the ones of the deterministic version will be adopted. Moreover, a modified Maxwellian
will be obtained in the kinetic formulation leading by its properties to get some Krushkov-like
inequalities.

The organization of the paper is the following: in section 2 we will present the context and state
the main result. Section 3 will be dedicated to the study of the stochastic BGK model (1.0.2).
We will state its existence and prove its convergence to a kinetic formulation. Finally, in section 4
we will conclude to the existence of a weak solution to (1.0.1) which satisfies some Krushkov-like
entropy relations.

2 Settings and Main Results

In the following, we will denote by Ck,µ with k ∈ N and µ > 0 the set of k times differentiable
µ-Hölder functions. Let (Ω,F , (Ft)t≥0,P) be a stochastic basis with a complete, right-continuous
filtration. We can assume without loss of generality that the σ−algebra F is countably generated
and (Ft)t≥0 is the completed filtration generated by the Wiener process and the initial condition.
We denote by P the predictable σ-algebra on Ω × [0, T ] associated to (Ft)t≥0 and by Ps the
predictable σ-algebra on Ω × [s, T ] associated to (Ft)t≥s. We write L∞Ps(Ω × [s, T ] ×TN ×R) to
denote

L∞(Ω× [s, T ]×TN ×R, Ps ⊗ B(TN )⊗ B(R), dP⊗ dt⊗ dx⊗ dξ).
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and idem for L∞P (Ω × [s, T ] × TN × R) The setting of our paper has some similarities with the
ones of Debussche and Vovelle [6] and Hofmanová [10]. Indeed, we will assume that we work on a
finite-time interval [0, T ], T > 0 with periodic boundary conditions, x belonging to TN where TN

is the N -dimensional torus. We will consider a fonction

a = (a1, . . . , aN ) : TN ×R→ RN (2.0.6)

of class C3,µ for some µ > 0 such that its satisfies for all x, ξ ,

0 ≤ divx(a(x, ξ)) (2.0.7)

and for all i = 1, . . . , N , for all x ∈ TN ,∫
R

|ξ ai(x, ξ)|dξ < +∞. (2.0.8)

We assume that W is a d-dimensional (Ft)-Wiener process, defined as follows

W (t) =

d∑
i=1

βk(t)ek (2.0.9)

where (βk)dk=1 are mutually independent Brownian processes, (ek)dk=1 an orthonormal basis of H
a finite dimensional Hilbert space.
For each u ∈ R, Φ(u) : H → L2(TN ) is defined by Φ(u)ek = gk(u) where gk(., u) is a regular
function on TN . More precisely, the functions g1, . . . , gd : TN × R → R are of class C4,µ with
linear growth and bounded derivatives of all orders. In that context, the following estimate holds
true

G2(x, ξ) =

d∑
k=1

|gk(x, ξ)|2 ≤ C(1 + |ξ|2), ∀x ∈ TN , ξ ∈ R. (2.0.10)

Moreover, we assume that

gk(x, 0) = 0, ∀x ∈ TN , k = 1, . . . , d, (2.0.11)

and for all x ∈ TN and for all k, ∫
R

|ξ ∂ξgk(x, ξ)|dξ < +∞. (2.0.12)

In addition, we assume that

Λ : TN → R is a nonpositive function of class C4,µ. (2.0.13)

Regarding the initial data, we suppose that u0 ∈ Lp(Ω;Lp(TN )) for all p ∈ [1,∞) and we will
consider F0 = 1u0>ξ.

Finally, quite similarly to the deterministic case with a high-field scaling [2], we will assume that

(

∫
R

|ξ fε(ω, t, x, ξ)|dξ) is bounded in L∞(Ω× [0, T ]×TN ), (2.0.14)

where fε := Fε + 10>ξ.

We finally can state our main result:
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Theorem 2.1. Under assumptions (2.0.7), (2.0.8), (2.0.9) (2.0.10), (2.0.11), (2.0.12), (2.0.13)
and (2.0.14), for any ε > 0 there exists a weak solution to the stochastic BGK model with a high
field scaling (1.0.2) denoted by Fε with initial condition F0 = 1u0>ξ. Moreover, Fε belongs to
L∞P (Ω× [0, T ]×TN ×R) and converges weak-∗ to Mu a modified Maxwellian associated to u where
u is a weak solution to the conservation law with stochastic forcing (1.0.1) with

B(x, u) =

∫ u

−∞

∫ +∞

0

a(x, ξ + vΛ(x))e−vdvdξ (2.0.15)

and

C(x, u) =

∫ u

−∞

∫ +∞

0

∂ξΦ(x, ξ + vΛ(x))e−vdvdξ. (2.0.16)

Denoting uε(t, x) :=
∫
R
fε(t, x, ξ)dξ, the sequence of local densities (uε)ε>0 converges to the weak

solution u in Lp(Ω × [0, T ] × TN ) for all p ∈ [1,+∞). In addition, u satisfy the Krushkov-like
inequalities (4.3.1).

3 Study of the stochastic BGK model with a high field scal-
ing

3.1 The stochastic kinetic model

We are interested in the following stochastic BGK model:{
dF ε + divx(a(x, ξ)F ε)dt+

Λ(x)

ε
∂ξF

εdt =
1uε>ξ − F ε

ε
dt− ∂ξF εΦdW +

1

2
∂ξ(G

2∂ξF
ε)dt,

Fε(0, x, ξ) = 1u0(x)>ξ(ξ).
(3.1.1)

The definition of a weak solution of this system is the following:

Definition 3.1. Let ε > 0, Fε ∈ L∞P (Ω × [0, T ] ×TN ×R) is called a weak solution of (3.1.1) if
for any test function φ ∈ C∞c (TN ×R), we have a.e. t ∈ [0, T ], P-a.s.

< Fε(t), φ >=< F0, φ > +

∫ t

0

< Fε(s), a.∇φ > ds+
1

ε

∫ t

0

< Fε(s),Λ(x)∂ξφ > ds

+
1

ε

∫ t

0

< 1uε(s)>ξ − Fε(s), φ(s) > ds+

d∑
k=1

∫ t

0

< Fε(s), ∂ξ(gkφ) > dβk(s)

+
1

2

∫ t

0

< Fε(s), ∂ξ(G
2∂ξφ) > ds. (3.1.2)

Let us state here several results. For Θ a smooth function with compact support satisfying 0 ≤
Θ ≤ 1 and

Θ(ξ) :=

{
1 if |ξ| ≤ 1/2,
0 if |ξ| ≥ 1,

(3.1.3)

we denote ΘR(ξ) := Θ( ξR ), gRk (x, ξ) := gk(x, ξ)ΘR(ξ) for k = 1, . . . , d and aR(x, ξ) := a(x, ξ)ΘR(ξ).
The coefficients ΦR and GR,2 are defined similarly as Φ and G2 replacing gk by gRk . We introduce
the intermediate problem,{

dXε + divx(a(x, ξ)Xε)dt+
Λ(x)

ε
∂ξX

εdt = −∂ξXεΦdW +
1

2
∂ξ(G

2∂ξX
ε)dt,

Xε(s) = X0,
(3.1.4)

and the truncated problem associated{
dXε + divx(aR(x, ξ)Xε)dt+

Λ(x)

ε
∂ξX

εdt = −∂ξXεΦRdW +
1

2
∂ξ(G

R,2∂ξX
ε)dt,

Xε(s) = X0.
(3.1.5)
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Proposition 3.2. If X0 is a Fs ⊗ B(TN ) ⊗ B(R)- measurable initial data belonging to L∞(Ω ×
TN ×R), then there exists a weak solution Xε ∈ L∞Ps(Ω× [s, T ]×TN ×R) to (3.1.4). Moreover,
it is represented by

Sε(t, s)(ω, x, ξ) := lim
R→+∞

[Sε,R(t, s)X0](ω, x, ξ), 0 ≤ s ≤ t ≤ T, (3.1.6)

with Sε,R a solution operator of (3.1.5).

From above, we obtain the following proposition:

Proposition 3.3. For any ε > 0, there exists a weak solution of the stochastic BGK model with
high field scaling (1.0.2) denoted by Fε. Moreover, Fε is represented by

Fε(t) = e−t/εSε(t, 0)1u0>ξ +
1

ε

∫ t

0

e−
t−s
ε Sε(t, s)1uε(s)>ξds. (3.1.7)

The proof of those two results is quite similar to the ones in [10] and mainly relies on a use of
the stochastic characteristics method developed by Kunita in [13]. Nevertheless, there is some

additional difficulties due to the presence of the term Λ(x)
ε ∂ξFε (which introduce a dependence on

ε of the solution operator) and the dependence of a in x. Then, for the sake of completness, we
give a quite detailed sketch of the proof of the existence in Appendix A.

3.2 Convergence of the stochastic kinetic model

From now on, let us denote by C a constant which does not depend on any parameter and may
change from a line to another. In this section, our purpose is to study the limit of the stochastic
kinetic model (1.0.2) as ε goes to 0 in the following weak formulation satisfied by Fε:

∫ T

0

< Fε(t), ∂tϕ(t) > dt+ < F0, ϕ(0) > +

∫ T

0

< Fε(t), a.∇ϕ(t) > dt

= −1

ε

∫ T

0

< 1uε>ξ − (Fε(t) + Λ(x)∂ξFε(t)), ϕ(t) > dt+

∫ T

0

< ∂ξFε(t)ΦdWt, ϕ(t) >

+
1

2

∫ T

0

< G2∂ξFε(t), ∂ξϕ(t) > dt. (3.2.1)

for ϕ ∈ C∞c ([0, T )×TN ×R).

Proposition 3.4. Up to a subsequence, (Fε)ε>0 converges weak-∗ to F with F satisfying the
following: for any test function ϕ ∈ Cc([0, T )×TN ×R),∫ T

0

< F (t), ∂tϕ(t) > dt+ < F0, ϕ(0) > +

∫ T

0

< F (t), a.∇ϕ(t) > dt

= m(∂ξϕ) +

∫ T

0

< ∂ξF (t)ΦdWt, ϕ(t) > +
1

2

∫ T

0

< G2∂ξF (t), ∂ξϕ(t) > dt (3.2.2)

with m a random nonnegative bounded Borel measure on [0, T ]×TN×R and where m(∂ξϕ) denotes

m(∂ξϕ) :=

∫
TN×[0,T ]×R

∂ξϕdm(x, t, ξ). (3.2.3)

Proof. From the representation formula of Fε (3.1.7), we deduce that the set of solutions {Fε; ε ∈
(0, 1)} is bounded in L∞P (Ω× [0, T ]×TN ×R). Using the Banach-Alaoglu theorem, we know that
there exists F in L∞P (Ω× [0, T ]×TN ×R) such that, up to subsequences, as ε goes to 0,

Fε
w−∗
⇀ F in L∞P (Ω× [0, T ]×TN ×R).
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Then, almost surely, we have as ε goes to 0,∫ T

0

< Fε(t), ∂tϕ(t) > dt −→
∫ T

0

< F (t), ∂tϕ(t) > dt,

∫ T

0

< Fε(t), a.∇ϕ(t) > dt −→
∫ T

0

< F (t), a.∇ϕ(t) > dt,

1

2

∫ T

0

< G2∂ξFε(t), ∂ξϕ(t) > dt −→ 1

2

∫ T

0

< G2∂ξF (t), ∂ξϕ(t) > dt.

Moreover, regarding the stochastic term, a use of dominated convergence theorem for stochastic
integrals allows us to conclude that almost surely,∫ T

0

< ∂ξFε(t)ΦdWt, ϕ(t) >→
∫ T

0

< ∂ξF (t)ΦdWt, ϕ(t) > .

Indeed, < Fε, ∂ξ(gkϕ) >−→< F, ∂ξ(gkϕ) > a.e. (ω, t) ∈ Ω× [0, T ]. In addition, by assumption on
gk and since Fε is bounded,

| < Fε, ∂ξ(gkϕ) > | ≤ C.

It remains to deal with the first term of the right-hand side of (3.2.1). Let us define

mε(t, x, ξ) :=
1

ε

∫ ξ

−∞
(1uε(t,x)>ζ(ζ)− Fε(t, x, ζ))dζ + (−Λ(x)Fε(t, x, ξ)). (3.2.4)

We can prove similarly as in [10] that the first term of the right-hand side of (3.2.4) is a random
nonnegative measure over [0, T ] × TN ×R and since by assumption (2.0.13), Λ(x) ≤ 0 for all x,
so does the second term. Indeed, we recall that a positive distribution is a positive Radon measure.

Moreover, fε satisfies

dfε + divx(a(x, ξ)fε)dt+ divx(a(x, ξ)10>ξ)dt

= ∂ξmε − ∂ξfεΦdWt − ∂ξ10>ξΦdWt +
1

2
∂ξ(G

2∂ξF
ε)dt. (3.2.5)

since fε = Fε − 10>ξ.

We consider the following test functions

ϕ(t, x, ξ) = Ψ(t, x)ϕ̃(ξ)

with Ψ ∈ Cc([0, T )×TN ), ϕ̃ ∈ Cc(R). We denote

H(t, x, ξ) :=

∫ ξ

−∞
ϕ(t, x, ζ)dζ.

Thus, using the fact that ∂ξ10>ξ = −δ0 and assumption (2.0.11), we have

E
∫ T

0

< mε, ϕ > dt = −E
∫ T

0

< ∂ξmε, H(t) > dt

= E
∫ T

0

< fε(t), ∂tH(t) > dt+ E < f0, ϕ(0) >

+ E
∫ T

0

< fε(t), a · ∇H(t) > dt+ E
∫ T

0

< 10>ξ, a · ∇H(t) > dt

− E
∫ T

0

< ∂ξfε(t)ΦdWt, H(t) > −1

2
E
∫ T

0

< G2∂ξFε(t), ∂ξH(t) > dt.

(3.2.6)
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At this point, our aim is to bound E
∫ T

0
< mε, ϕ > dt for all ϕ in Cc([0, T )×TN×R) independently

of ε in order to conclude thanks to properties of Radon measure on locally compact spaces. Let us

first prove that the term E
∫ T

0
< ∂ξfεΦdWt, H(t) > disappears. We recall that a martingale has

zero expected value. Therefore, the idea is to use the stochastic Fubini theorem (see [5, Theorem
4.18]) to interchange the integrals with respect to x, ξ and the stochastic one. In order to apply
this theorem, we must prove that∫

TN

∫
R

(
E
∫ T

0

|fε(t)∂ξ(gkH(t))|2 dt

)1/2

dξdx < +∞

for each k = 1, 2, . . . , d. Indeed, we have

∫
TN

∫
R

(
E
∫ T

0

|fε(t)∂ξ(gkH(t))|2 dt

)1/2

dξdx

=

∫
TN

∫
R

(
E
∫ T

0

|fε(t)∂ξgkH(t) + fε(t)gkϕ|2 dt

)1/2

dξdx

≤
∫
TN

∫
R

(E∫ T

0

|fε(t)∂ξgkH(t)|2 dt

)1/2

+

(
E
∫ T

0

|fε(t)gkϕ|2 dt

)1/2
 dξdx

≤ C
(∫

TN

∫
R

|∂ξgkξ|dξdx+

∫
TN

∫
R

(1 + |ξ|2)1/2ϕ̃dξdx

)
< +∞

(3.2.7)

using the fact that fε is bounded and assumption (2.0.12). Then, we can interchange the integrals.

It remains to prove that
∫ T

0
∂ξfεgkH(t)dWt is a well defined martingale. For each k = 1, . . . , d, we

have

E
∫ T

0

|fε(t)∂ξ(gkH(t))|2 dt

≤ C

(
E
∫ T

0

|fε(t)∂ξgkH(t)|2 dt+ E
∫ T

0

|fε(t)gkϕ|2 dt

)
< +∞ (3.2.8)

by the same arguments as previously. So, finally we have∣∣∣∣∣E
∫ T

0

< mε, ϕ > dt

∣∣∣∣∣ ≤ E
∫ T

0

< fε(t), |∂tΨ(t)ξ| > dt+ |E < f0, ϕ(0) >|

+ E
∫ T

0

< fε(t), |a.∇Ψ(t)ξ| > dt+ E
∫ T

0

< 10>ξ, |a.∇Ψ(t)ξ| > dt

+
1

2

∣∣∣∣∣E
∫ T

0

< G2∂ξFε(t), ϕ(t) > dt

∣∣∣∣∣ .
(3.2.9)

Then by assumptions (2.0.8) and (2.0.12), we deduce that E
∫ T

0

< mε, ϕ > dt is bounded indepen-

dently of ε. By density, the results hold true for all ϕ ∈ C∞c ([0, T )×TN ×R) and similarly for all
ϕ ∈ Cc([0, T ) × TN ×R). Then, by properties of Radon measures on locally compact spaces, we
can conclude that for almost every ω ∈ Ω, there exists a nonnegative measure m(ω) such that, up
to a subsequence, almost surely,∫ T

0

< mε, ϕ(t) > dt −→
∫ T

0

< m,ϕ(t) > dt (3.2.10)
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for any test function ϕ ∈ C∞c ([0, T )×TN ×R).

Finally, passing to the limit in (3.2.1) leads to the statement.

Remark 3.1. The purpose of assumptions (2.0.8) and (2.0.12) can actually be found in the above

proof to bound E
∫ T

0
< mε, ϕ > dt. Indeed, due to the dependence on ε of the stochastic character-

istic system because of the presence of the term Λ(x)
ε ∂ξFε, the techniques developed in [10] can not

be adopted here.

3.3 A kinetic formulation

As mentioned previously, a kinetic formulation is a kinetic equation at the macroscopic level satisfy
by a density-like function. At this point, we already have obtained (3.2.2), the kinetic equation
satisfy by F at the macroscopic level. Then, it remains to study the behavior of its velocity distri-
bution.

In order to do so, let us recall here some notions that will be needed to get the kinetic formulation
associated to (1.0.1).

Definition 3.5 (Young measure). Let (X,λ) be a finite measure space. Let P1(R) denote the set
of probability measures on R. We say that a map ν : X → P1(R) is a Young measure on X if, for
all φ ∈ Cb(R), the map z 7→ νz(φ) from X to R is measurable.

We have the following compactness result:

Theorem 3.6 (Compactness of Young measure). Let (X,λ) be a finite measure space such that
L1(X) is separable. Let (νn) be a sequence of Young measures on X satisfying for some p ≥ 1,

sup
n

∫
X

∫
R

|ξ|pdνnz (ξ)dλ(z) < +∞.

Then, there exists a Young measure ν on X and a subsequence still denoted (νn) such that, for all
h ∈ L1(X), for all φ ∈ Cb(R),

lim
n→+∞

∫
X

h(z)

∫
R

φ(ξ)dνnz (ξ)dλ(z) =

∫
X

h(z)

∫
R

φ(ξ)dνz(ξ)dλ(z).

The proof, quite classical, can be found in [6].

The purpose of this subsection is then actually to prove the following result:

Proposition 3.7. There exists u ∈ L1(Ω× [0, T ]×TN ) such that for all t ∈ [0, T ] for almost every
(x, ξ, ω), F = Mu where we denote by Mu the modified Maxwellian solution to the equation

Mu + Λ(x)∂ξMu = 1u>ξ. (3.3.1)

Proof. Multiplying (3.1.1) by ε, then we have

1uε>ξ − Fε − Λ(x)∂ξFε −→ 0 (3.3.2)

in the sense of distributions over (0, T )×TN ×R almost surely. So, we deduce that

∂ξ [1uε>ξ − Fε − Λ(x)∂ξFε] −→ 0

or again
− δuε=ξ − ∂ξFε − Λ(x)∂2

ξFε −→ 0 (3.3.3)

in the sense of distributions over (0, T )×TN ×R almost surely.
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We set νεt,x := δuε(t,x)=ξ which by Definition 3.5 is a Young measure. Then, by assumption (2.0.14),
we have

sup
ε>0

sup
t∈[0,T ]

∫
TN

∫
R

|ξ|dνεt,x(ξ)dx = sup
ε>0

sup
t∈[0,T ]

∫
TN
|uε(t, x)|dx

≤ sup
ε>0

sup
t∈[0,T ]

∫
TN

∫
R

|fε(t, x, ξ)|dξdx < +∞.
(3.3.4)

Using Proposition 3.6, we know that there exists a Young measure νt,x such that νεt,x → νt,x (up
to a subsequence). Then, we deduce from (3.3.3) and Proposition 3.4 that

∂ξF + Λ(x)∂2
ξF = −ν. (3.3.5)

Let us prove then that F + Λ(x)∂ξF ∈ {0, 1}. Let us construct the following mollifier on [0, T ]:

θ(t) :=

{
C̃ exp

(
1

t2−1

)
if t ≤ 1,

0 else
(3.3.6)

with C̃ the constant such that

∫ T

0

θ(t)dt = 1. We denote for 0 ≤ δ ≤ 1,

θδ(t) :=
1

δ
θ

(
t

δ

)
. (3.3.7)

Then we have

|θδ(t)| ≤
C

δ
and |θ′δ(t)| ≤

C

δ2
, (3.3.8)

with C a constant which does not depend on δ. We set for s ∈ [0, T ],

ϕ1(t, x, ξ) = θδ(s− t)Ψ1(x, ξ) and ϕ2(t, y, ζ) = θδ(s− t)Ψ2(y, ζ)

with Ψ1 ∈ C∞c (TN
x ×Rξ), Ψ2 ∈ C∞c (TN

y ×Rζ).

By (3.2.1), we have that∫ T

0

< Fε(t) + Λ(x)∂ξFε(t), ϕ1(t) > dt×
∫ T

0

< 1− (Fε(t) + Λ(x)∂ξFε(t)), ϕ2(t) > dt

=

[∫ T

0

< 1uε(t)>ξ, ϕ1(t) > dt

+ε

(∫ T

0

< Fε(t), ∂tϕ1(t) > dt+ < F0, ϕ1(0) > +

∫ T

0

< Fε(t), a.∇ϕ1(t) > dt

−
∫ T

0

< ∂ξFε(t)ΦdWt, ϕ1(t) > −1

2

∫ T

0

< G2∂ξFε(t), ∂ξϕ1(t) > dt

)]

×

[∫ T

0

< 1− 1uε(t)>ζ , ϕ2(t) > dt

−ε

(∫ T

0

< Fε(t), ∂tϕ2(t) > dt+ < F0, ϕ2(0) > +

∫ T

0

< Fε(t), a.∇ϕ2(t) > dt

−
∫ T

0

< ∂ξFε(t)ΦdWt, ϕ2(t) > −1

2

∫ T

0

< G2∂ξFε(t), ∂ξϕ2(t) > dt

)]
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≤

(∫ T

0

< 1uε(t)>ξ, ϕ1(t) > dt

)
×

(∫ T

0

< 1− 1uε(t)>ζ , ϕ2(t) > dt

)

+ε

(
1 +

C

δ

∫ T

0

< 1, |Ψ2| > dt

)(∣∣∣∣∣
∫ T

0

< F (t), ∂tϕ1(t) > dt

∣∣∣∣∣+ |Ξ1 + r1(ε)|

)

+ε
C

δ

∫ T

0

< 1, |Ψ1| > dt

(∣∣∣∣∣
∫ T

0

< F (t), ∂tϕ2(t) > dt

∣∣∣∣∣+ |Ξ2 + r2(ε)|

)

+ε2
2∏
i=1

(∣∣∣∣∣
∫ T

0

< F (t), ∂tϕi(t) > dt

∣∣∣∣∣+ |Ξi + ri(ε)|

)
,

where for i = 1, 2,

Ξi :=< F0, ϕi(0) > +

∫ T

0

< F (t), a.∇ϕi(t) > dt

−
∫ T

0

< ∂ξF (t)ΦdWt, ϕi(t) > −
1

2

∫ T

0

< G2∂ξF (t), ∂ξϕi(t) > dt,

ri(ε) exists and is a function such that ri(ε)−→
ε→0

0 by Proposition 3.4. Then, we deduce from (3.3.8)

that ∫ T

0

< Fε(t) + Λ(x)∂ξFε(t), ϕ1(t) > dt×
∫ T

0

< 1− (Fε(t) + Λ(x)∂ξFε(t)), ϕ2(t) > dt

≤

(∫ T

0

< 1uε(t)>ξ, ϕ1(t) > dt

)
×

(∫ T

0

< 1− 1uε(t)>ζ , ϕ2(t) > dt

)

+ε

(
1 +

C

δ

∫ T

0

< 1, |Ψ2| > dt

)(
C

δ2

∫ T

0

< F (t), |Ψ1(t)| > dt+ Ξ1 + r1(ε)

)

+ε
C

δ

∫ T

0

< 1, |Ψ1| > dt

(
C

δ2

∫ T

0

< F (t), |Ψ2(t)| > dt+ Ξ2 + r2(ε)

)

+ε2
2∏
i=1

C

δ2

(∫ T

0

< F (t), |Ψi(t)| > dt+ |Ξi + ri(ε)|

)
.

Moreover, since

E

[∫ T

0

< Fε(t) + Λ(x)∂ξFε(t), ϕ1(t) > dt×
∫ T

0

< 1− (Fε(t) + Λ(x)∂ξFε(t)), ϕ2(t) > dt

]
−→
δ→0

E [< Fε(s) + Λ(x)∂ξFε(s),Ψ1(s) >< 1− (Fε(s) + Λ(x)∂ξFε(s)),Ψ2(s) >]

(3.3.9)
and

E

[∫ T

0

< 1uε(t)>ξ, ϕ1(t) > dt×
∫ T

0

< 1− 1uε(t)>ζ , ϕ2(t) > dt

]
−→
δ→0

E
[
< 1uε(s)>ξ,Ψ1(s) >< 1− 1uε(s)>ζ ,Ψ2(s) >

]
,

(3.3.10)

we deduce that

E [< Fε(s) + Λ(x)∂ξFε(s),Ψ1(s) >< 1− (Fε(s) + Λ(x)∂ξFε(s)),Ψ2(s) > +r3(δ)]

≤ E
[
< 1uε(s)>ξ,Ψ1(s) >< 1− 1uε(s)>ζ ,Ψ2(s) > +r4(δ)

+C
ε

δ3
(1 + |r1(ε|) + |r2(ε))|+ C

ε2

δ4

2∏
i=1

(1 + |ri(ε)|)

]
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where by (3.3.9) and (3.3.10), r3(δ) and r4(δ) exist and are functions such that r3(δ), r4(δ)−→
δ→0

0. We

denote α(x, ξ, y, ζ) = ψ1(x, ξ)Ψ2(y, ζ) and� ., .� the duality distribution over TN
x ×Rξ×TN

y ×Rζ .
Then we can rewrite the above inequality as follows

E� (Fε(s) + Λ(x)∂ξFε(s)) (1− (Fε(s) + Λ(x)∂ξFε(s))) , α� +r3(δ)

≤ E� 1uε(s)>ξ
(
1− 1uε(s)>ζ

)
, α� +r4(δ)

+C
ε

δ3
(1 + |r1(ε)|+ |r2(ε))|+ C

ε2

δ4

2∏
i=1

(1 + |ri(ε)|).

By a density argument, it remains true for any test function α ∈ C∞c (TN
x ×Rξ ×TN

y ×Rζ). We

consider %η1 and ρη2 some mollifiers on respectively TN and R. For any R > 0, we take

α(x, ξ, y, ζ) = %η1(x− y)ρη2(ξ − ζ)ΘR(|x|)ΘR(ξ).

Passing to the limit η1, η2 −→ 0, and ε −→ 0 with δ = ε1/4, we finally get

E < F (s) + Λ(x)∂ξF (s), (1− (F (s) + Λ(x)∂ξF (s))) ΘR(|x|)ΘR(ξ) >≤ 0.

Moreover, by (3.3.2) there exists a distribution r6 such that

Fε + Λ(x)∂ξFε = 1uε>ξ + r6(ε)

with r6(ε)−→
ε→0

0.

Then
r6(ε) ≤ Fε + Λ(x)∂ξFε ≤ 1 + r6(ε)

and passing to the limit, we get
0 ≤ F + Λ(x)∂ξF ≤ 1.

Finally,
E < F (s) + Λ(x)∂ξF (s), (1− (F (s) + Λ(x)∂ξF (s))) ΘR(|x|)ΘR(ξ) >= 0.

Thus for almost every x, ξ, ω, ∀s ∈ [0, T ], we deduce from above that

F (s, x, ξ, ω) + Λ(x)∂ξF (s, x, ξ, ω) ∈ {0, 1}.

Since we have

F + Λ(x)∂ξF = −
∫ ξ

0

−∂ξ(F + Λ(x)∂ξF )dζ

= −
∫ ξ

0

νdζ

with ν a Young measure, there exists u(x, t, ω) ∈ R such that

F + Λ(x)∂ξF = 1u(t)>ξ. (3.3.11)

Moreover, we can deduce from (3.3.5) that

∂ξ1u(t)>ξ = −ν

i.e.
ν = δu=ξ. (3.3.12)

Therefore because of (3.3.4), we have∫
TN
|u(t, x)|dx =

∫
TN

∫
R

|ξ|dνt,x(ξ)dxdt < +∞ (3.3.13)

which concludes the proof.
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We can actually strengthen the convergence and get the following result:

Proposition 3.8. (uε)ε>0 converges in Lp(Ω× [0, T ]×TN ) to u for all p ∈ [1,+∞).

Proof. Let us recall that we have (up to subsequence)

lim
ε→0

E
∫

[0,T ]×TN
h(t, x)

∫
R

φ(ξ)dνεt,xdxdt = E
∫

[0,T ]×TN
h(t, x)

∫
R

φ(ξ)dνt,xdxdt

for all h ∈ L1(Ω× [0, T ]×TN ) i.e.

lim
ε→0

E
∫

[0,T ]×TN
h(t, x)φ(uε(t, x))dxdt = E

∫
[0,T ]×TN

h(t, x)

∫
R

φ(ξ)dνt,xdxdt. (3.3.14)

Moreover, we have established previously that ν = δu=ξ. Then, we deduce from the compensated
compactness theorem that since ν is a Dirac, (uε)ε>0 converges strongly in Lp(Ω× [0, T ]×TN ) for
all p ∈ [1,+∞).

4 Existence of a solution to the conservation law with stochas-
tic forcing

4.1 Formal calculus and modified Maxwellian

In this section, we will show in a formal way the passage from the kinetic formulation to the
conservation law with stochastic forcing (1.0.1). Indeed, by Proposition 3.7 we know that F = Mu

and so satisfies
Λ(x)∂ξF = 1u>ξ − F. (4.1.1)

For any function b(x, ξ), we have∫
R

b(x, ξ)Λ(x)∂ξF (x, ξ)dξ =

∫ u

−∞
b(x, ξ)dξ −

∫
R

b(x, ξ)F (x, ξ)dξ.

We denote

B(x, v) :=

∫ v

−∞
b(x, ξ)dξ. (4.1.2)

Then we get

B(x, u) =

∫
R

b(x, ξ)Λ(x)∂ξF (x, ξ)dξ +

∫
R

b(x, ξ)F (x, ξ)dξ

=

∫
R

[b(x, ξ)− ∂ξb(x, ξ)Λ(x)]F (x, ξ)dξ.

For b(x, ξ) solution of the equation

b(x, ξ)− ∂ξb(x, ξ)Λ(x) = a(x, ξ), (4.1.3)

we have

B(x, u) =

∫
R

a(x, ξ)F (x, ξ)dξ.

If we impose that b is bounded, by computation of the solution of (4.1.3), we get

B(x, u) =

∫ u

−∞
b(x, ξ)dξ =

∫ u

−∞

∫ +∞

0

a(x, ξ + vΛ(x))e−vdvdξ. (4.1.4)

Quite similarly, for c(x, ξ) solution of the equation

c(x, ξ)− ∂ξc(x, ξ)Λ(x) = ∂ξΦ(x, ξ), (4.1.5)
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we have

C(x, u) =

∫
R

∂ξΦ(x, ξ)F (x, ξ)dξ

where

C(x, u) :=

∫ u

−∞
c(x, ξ)dξ =

∫ u

−∞

∫ +∞

0

∂ξΦ(x, ξ + vΛ(x))e−vdvdξ. (4.1.6)

Let us start from the kinetic formulation

dMu + divx(a(x, ξ)Mu)dt = ∂ξm− ∂ξMuΦdWt +
1

2
∂ξ(G

2∂ξMu)dt. (4.1.7)

Since because of (4.1.1), we have ∫
R

(Mu − 10>ξ)dξ = u,

by integrating (4.1.7), we get

du+ divxB(x, u)dt = C(x, u)dWt.

In addition, the modified Maxwellian being the solution of the equation (4.1.1), we actually have
an explicit expression for it:

Mk(x, ξ) =

∫ +∞

0

1k>ξ(ξ − Λ(x)u)e−udu. (4.1.8)

By easy computations and Fubini’s Theorem, we get the following proposition:

Proposition 4.1. We get, for any k, k′ ∈ R,

(i)

∫
R

(Mk(x, ξ)− 10>ξ(ξ))dξ = k,

(ii) sgn(Mk(x, ξ)−Mk′(x, ξ)) = sgn(k − k′),

(iii)

∫
R

|Mk(x, ξ)−Mk′(x, ξ)|dξ = |k − k′|,

(iv)

∫
R

a(x, ξ)Mk(x, ξ)dξ = B(x, k),∫
R

∂ξΦ(x, ξ)Mk(x, ξ)dξ = C(x, k).

where

B(x, k) =

∫ k

−∞

∫ +∞

0

a(x, ξ + vΛ(x))e−vdvdξ, (4.1.9)

C(x, k) =

∫ k

−∞

∫ +∞

0

∂ξΦ(x, ξ + vΛ(x))e−vdvdξ, (4.1.10)

and

Mk(x, ξ) =

∫ +∞

0

1k>ξ(ξ − Λ(x)u)e−udu. (4.1.11)
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4.2 Existence of a weak solution

We are now in position to prove the following result:

Proposition 4.2. There exists a weak solution u ∈ L1(Ω × [0, T ] × TN ) to the conservation law
with stochastic forcing (1.0.1).

Proof. Let us consider the following test function

ϕ(t, x, ξ) = ΘR(ξ)Ψ(t, x) (4.2.1)

with ΘR defined in section 3.1, Ψ ∈ Cc([0, T ) × TN ). Then, applying the kinetic formulation, we
get P− a.s.,∫ T

0

< Mu(t)ΘR, ∂tΨ > dt+ < F (0), ϕ(0) > +

∫ T

0

< Mu(t)ΘR, a.∇Ψ > dt

= m(∂ξΘRΨ)−
∫ T

0

< Mu(t)∂ξΦdWt,ΘRΨ(t) > dt

−
∫ T

0

< Mu(t)ΦdWt, ∂ξΘRΨ(t) > +
1

2

∫ T

0

< G2∂ξMu(t), ∂ξΘRΨ(t) > dt. (4.2.2)

We denote < ., . >x the duality distribution over TN
x . Since, we have

0 =< ∂t10>ξ, ϕ >= − < 10>ξ, ∂tϕ > + < 10>ξ, ϕ(0) >, (4.2.3)

using the same arguments as previously, we can rewrite (4.2.2) as follows

∫ T

0

<

∫
R

(Mu(t)− 10>ξ)ΘRdξ, ∂tΨ >x dt+ <

∫
R

(F (0)− 10>ξ)ΘR(ξ)dξ,Ψ(0, x) >x

+

∫ T

0

<

∫
R

Mu(t)ΘR(ξ)a(ξ)dξ.∇Ψ, 1 >x dt

= m(∂ξΘRΨ)−
∫ T

0

<

∫
R

Mu(t)∂ξΦΘR(ξ)dξdWt,Ψ(t) >x

−
∫ T

0

< Mu(t)ΦdWt, ∂ξΘRΨ(t) > +
1

2

∫ T

0

< G2∂ξMu(t), ∂ξΘRΨ(t) > dt. (4.2.4)

Then, using again the dominated convergence for deterministic and stochastic integrals and the
properties of the modified Maxwellian stated in Proposition 4.1, we get when R→∞,∫ T

0

< u, ∂tΨ > dt+ < u0,Ψ(0) >x +

∫ T

0

< B(x, u).∇Ψ, 1 > dt

=

∫ T

0

< −C(x, u)dWt,Ψ > (4.2.5)

which concludes the proof.

4.3 Krushkov-like entropies

In this section, though we are not able to obtain the exact Krushkov entropy relations using the
deterministic techniques because of the presence of the stochastic term, we still are able to establish
some Krushkov-like inequalities.
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Proposition 4.3. For all ϕ ∈ C∞c ([0, T )×TN ×R), we have∫
[0,T ]×TN×R

|u(t, x)− k| ∂tϕ(t, x, ξ)dtdxdξ

+

∫
[0,T ]×TN×R

[sgn(u(t, x)− k)(B(x, u(t, x))−B(x, k))divxϕ(t, x, ξ)] dtdxdξ

+

∫
[0,T ]×TN×R

divx(B(x, k))sgn(u(t, x)− k)ϕ(t, x, ξ)dtdxdξ

−
∫

[0,T ]×TN×R
sgn(u(t, x)− k)C(x, u(t, x))dWtdxdξ ≤ Cϕ P-a.s. (4.3.1)

where Cϕ is a constant which depends only on ϕ.

Proof. Previously, we have established that

dMu + divx(aMu)dt = ∂ξm− ∂ξMuΦdWt +
1

2
∂ξ(G

2∂ξMu)dt (4.3.2)

in the sense of distributions P-a.s.. We deduce from above that we have

d(Mu−Mk)+divx(a(Mu−Mk))dt = ∂ξm−∂ξMuΦdWt+
1

2
∂ξ(G

2∂ξMu)dt−divx(aMk)dt (4.3.3)

in the sense of distributions P-a.s.

By a similar reasoning, we actually can extend (3.2.2) to the following test function

ϕ̃(ω, t, x, ξ) =
1

δN+1
η

(
y − x
δ

,
ζ − ξ
δ

)
P ′((Mu −Mk)δ(t, y, ζ))Ψ(t) (4.3.4)

where P is a C2(R) function such that P ′ ∈ L∞(R), (Mu −Mk)δ := (Mu −Mk) ∗ ηδ with η, ηδ

defined similarly on TN ×R to θ, θδ on [0, T ] defined on (3.3.6) and (3.3.7). So we obtain that for
all (y, ζ) in TN ×R, we have

d(Mu −Mk)δP ′((Mu −Mk)δ + divx(a(Mu −Mk)δ)P ′((Mu −Mk)δ)dt

= ∂ξm∗ηδP ′((Mu−Mk)δ)−(∂ξMuΦ)∗ηδP ′((Mu−Mk)δ)dWt+
1

2
∂ξ(G

2∂ξMu)∗ηδP ′((Mu−Mk)δ)dt

− divx(aMk) ∗ ηδP ′((Mu −Mk)δ)dt− rδP ′((Mu −Mk)δ)dt (4.3.5)

where rδ := divx(a(Mu −Mk)) ∗ ηδ − divx(a(Mu −Mk)δ) in the sense of distributions over (0, T )
P-a.s. In order to get the result, we need to consider the above equality against a test function
depending on (y, ζ). Then, though we have the above equality for all (y, ζ) P-a.s., we need to
establish it P-a.s. for all (y, ζ). It is first easy to deduce from above that the result holds true
P-a.s. for all (y, ζ) ∈ (T ∩Q)N ×Q. Extending this to all (y, ζ) ∈ TN ×R is direct by continuity
in all the terms except (∂ξMuΦ) ∗ ηδP ′((Mu−Mk)δ)dWt. Let us now deal with this last term. We
consider a test function ϕ ∈ C∞c (TN

y ×Rζ), and are interested in the following terms:∫ T

0

(Mu∂ξgk)δ(t, y, ζ)Ψ(t)P ′((Mu −Mk)δ(t, y, ζ)dβk(t)ϕ(y, ζ) (4.3.6)

and ∫ T

0

(Mugk) ∗ ∂ξηδ(y, ζ)Ψ(t)P ′((Mu −Mk)δ(t, y, ζ))dβk(t)ϕ(y, ζ), (4.3.7)

for k = 1, . . . , d. Let us deal with the first one. In order to use a well known result stating that we
can find a continuous modification of a stochastic process, we must satisfy in our case the following
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assumption, for all 0 ≤ s ≤ t ≤ T , (y, ζ), (x, ξ) in TN ×R,

E
∣∣∣∣∫ t

0

(Mu∂ξgk)δ(r, y, ζ)Ψ(r)P ′((Mu −Mk)δ(r, y, ζ))dβk(r)ϕ(y, ζ)

−
∫ s

0

(Mu∂ξgk)δ(r, x, ξ)Ψ(r)P ′((Mu −Mk)δ(r, x, ξ))dβk(r)ϕ(x, ξ)

∣∣∣∣λ
≤ C(|t− s|+ |x− y|)N+2+ε (4.3.8)

with λ > 1, ε > 0. Actually, we have the following inequalities for n > 1:

E
∣∣∣∣∫ t

0

(Mu∂ξgk)δ(r, y, ζ)Ψ(r)P ′((Mu −Mk)δ(r, y, ζ))dβk(r)ϕ(y, ζ)

−
∫ s

0

(Mu∂ξgk)δ(r, x, ξ)Ψ(r)P ′((Mu −Mk)δ(r, x, ξ))dβk(r)ϕ(x, ξ)

∣∣∣∣n

≤ CE
∣∣∣∣∫ t

s

(Mu∂ξgk)δ(r, y, ζ)Ψ(r)P ′((Mu −Mk)δ(r, y, ζ))dβk(r)ϕ(y, ζ)

∣∣∣∣n
+CE

∣∣∣∣∫ s

0

Ψ(r)
[
(Mu∂ξgk)δ(r, y, ζ)P ′((Mu −Mk)δ(r, y, ζ))ϕ(y, ζ)

− (Mu∂ξgk)δ(r, x, ξ))P ′((Mu −Mk)δ(r, x, ξ))ϕ(x, ξ)
]
dβk(r)

∣∣n
≤ CE

(∫ t

s

|(Mu∂ξgk)δ(r, y, ζ)Ψ(r)P ′((Mu −Mk)δ(r, y, ζ))ϕ(y, ζ)|2dr
)n/2

+CE
(∫ s

0

∣∣Ψ(r)
[
(Mu∂ξgk)δ(r, y, ζ)P ′((Mu −Mk)δ(r, y, ζ))ϕ(y, ζ)

− (Mu∂ξgk)δ(r, x, ξ)P ′((Mu −Mk)δ(r, x, ξ))ϕ(x, ξ)
]∣∣2 dr)n/2

≤ C|t− s|n/2 + C

(∫ s

0

|ϕ(y, ζ)− ϕ(x, ξ)|2dr
)n/2

≤ C (|t− s|+ |(y, ζ)− (x, ξ)|)n

(4.3.9)

by assumptions on gk, P and ϕ and using the fact that Mu is bounded. For n = N + 3, the
assumption is satisfied. The reasoning is the same for the second term. So finally, we can conclude
that (4.3.5) holds true P-a.s. for all (y, ζ) ∈ TN ×R.

The next step consists in using the chain rule. Thus in order to do so, we must reformulate the
problem in a Stratonovich version. We have P-a.s. for all (y, ζ) ∈ TN ×R,

d(Mu −Mk)δP ′((Mu −Mk)δ) + divx(a(Mu −Mk)δ)P ′((Mu −Mk)δ)dt

= ∂ξm∗ηδP ′((Mu−Mk)δ)− (∂ξMuΦ)∗ηδP ′(Mu−Mk)◦dWt+
1

2
∂ξ(G

2∂ξMu)∗ηδP ′(Mu−Mk)dt

− divx(aMk) ∗ ηδP ′(Mu −Mk)dt− rδP ′(Mu −Mk)dt+ τ δ. (4.3.10)

in the sense of distributions over (0, T ), with τ δ the corrective terms associated to the passage from
(∂ξMuΦ) ∗ ηδP ′(Mu −Mk)dWt to (∂ξMuΦ) ∗ ηδP ′(Mu −Mk) ◦ dWt. We first deal with the case
m = 0. We integrate (4.3.10) against ϕ(y, ζ). Using in a similar way as previously the dominated
convergence theorem for deterministic and stochastic integrals as well as the commutation lemma
of Di Perna-Lions [7] to prove the disappearance of rδ, we obtain

dP (Mu −Mk) + divx(aP (Mu −Mk))dt− divx(a)(P (Mu −Mk)− P ′(Mu −Mk)(Mu −Mk))dt

= ∂ξMuΦP ′(Mu −Mk) ◦ dWt +
1

2
∂ξ(G

2∂ξMu)P ′(Mu −Mk)dt

− divx(aMk)P ′(Mu −Mk)dt+ lim
δ→0

τ δ. (4.3.11)
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in the sense of distributions against test functions of the form Ψ(t)ϕ(y, ζ) P-a.s. Noticing that the
limit of the corrective terms of (∂ξMuΦ) ∗ ηδP ′(Mu −Mk) ◦ dWt is actually the corrective terms
of ∂ξMuΦP ′(Mu −Mk) ◦ dWt, we finally have

dP (Mu −Mk) + divx(aP (Mu −Mk))dt− divx(a)(P (Mu −Mk)− P ′(Mu −Mk)(Mu −Mk))dt

= ∂ξMuΦP ′(Mu −Mk)dWt +
1

2
∂ξ(G

2∂ξMu)P ′(Mu −Mk)dt

− divx(aMk)P ′(Mu −Mk)dt (4.3.12)

in the sense of distributions against test functions of the form Ψ(t)ϕ(y, ζ) P-a.s. As previously, by
density we can extend it to any test function in C∞c ([0, T )×TN ×R).

We conclude as in the deterministic case by taking P ′ = sgnα and P (λ) =
∫ λ

0
sgnα(s)ds where

sgnα is a smooth regularization of the sign function. By a quite similar reasoning, letting α goes
to 0, we finally get

d|Mu −Mk|+ divx(a|Mu −Mk|)dt+ divx(aMk)sgn(Mu −Mk)dt

+ (∂ξMuΦ)sgn(Mu −Mk)dWt −
1

2
∂ξ(G

2∂ξMu)sgn(Mu −Mk)dt

− divx(aMk)sgn(Mu −Mk)dt = 0 (4.3.13)

in the sense of distributions over (0, T )×TN ×R P-a.s.

Let us finally go back to the case m 6= 0. Then we have the following inequality∫
TNy ×Rζ

∫
[0,T ]×TNx ×Rξ

1

δN+1
∂ξη(

y − x
δ

,
ζ − ξ
δ

)P ′(Mu −Mk)(t, y, ζ)dm(t, x, ξ)ϕ(t, y, ζ)dydζ

≤ ‖P ′‖∞
∫

[0,T ]×TNx ×Rξ

∂ξϕ ∗ ηδ(x, ξ)dm(t, x, ξ)

≤ C‖P ′‖∞m(K),
(4.3.14)

where K is a compact containing the support of ϕ.

Finally, integrating the above inequality against a test function of the form ϕ(t, x, ξ) = ΘR(ξ)ψ(t, x)
and using the properties associated to the modified Maxwellian stated in Proposition 4.1 together
again with the use of dominated convergence theorem for R→ +∞ leads to the conclusion.

Appendix

A Well posedness of the stochastic kinetic model

Our purpose is to establish the existence of a solution to the stochastic BGK model{
dF ε + divx(a(x, ξ)F ε)dt+

Λ(x)

ε
∂ξF

εdt =
1uε>ξ − F ε

ε
dt− ∂ξF εΦdW +

1

2
∂ξ(G

2∂ξF
ε)dt,

Fε(0) = 1u0>ξ,
(A.0.15)

where we recall uε(t, x) =

∫
R

fε(t, x, ξ)dξ and fε = Fε + 10>ξ.

The proof being quite similar to the one in the case of a classical stochastic BGK model, we will
not investigate all the details in the following and we will invite the reader to consult [10] for more
technical details.
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In order to use Duhamel’s formula, let us first show an interest in the following auxiliary problem{
dXε + divx(a(x, ξ)Xε)dt+

Λ(x)

ε
∂ξX

εdt = −∂ξXεΦdW +
1

2
∂ξ(G

2∂ξX
ε)dt,

Xε(s) = X0.
(A.0.16)

In order to apply the stochastic characteristic of Kunita [13], we introduce a truncated problem.
Of course, we will then pass to the limit on the truncation parameter to get our original problem.

A.1 A truncated problem

We are interested in the truncated problem described in section 3.1,{
dXε + divx(aR(x, ξ)Xε)dt+

Λ(x)

ε
∂ξX

εdt = −∂ξXεΦRdW +
1

2
∂ξ(G

R,2∂ξX
ε)dt,

Xε(s) = X0.
(A.1.1)

To apply the method of stochastic characteristics, we must reformulate the problem in Stratonovich
form. Using the formula which links Itô and Stratonovich integrals, we are able to prove that if
X is a C1(TN × R)-valued continuous (Ft)-semimartingale whose martingale part is given by

−
∫ t

0
∂ξΦ

RdW then

−
∫ t

0

∂ξΦdW +
1

2

∫ t

0

∂ξ(G
R,2∂ξX)dr = −

∫ t

0

∂ξXΦR ◦ dW +
1

4

∫ t

0

∂ξX∂ξG
R,2dr (A.1.2)

and for X being only a D′(TN × R)-valued continuous (Ft)-semimartingale, the result is still
valid in the sense of distributions (see [10] for more details). The truncated problem can then be
reformulated as follows{

dXε + divx(aR(x, ξ)Xε)dt+
Λ(x)

ε
∂ξX

εdt = −∂ξXεΦR ◦ dW +
1

4
∂ξX

ε∂ξG
R,2dt,

Xε(s) = X0.
(A.1.3)

and applying the method, we obtain the following proposition:

Proposition A.1. Let R > 0. If X0 ∈ C3,µ(TN ×R) almost surely, there exists a unique strong
solution to (A.1.3) that we will denote Xε(t, x, ξ; s).
In addition, Xε(t, x, ξ; s) is a continuous C3,ν-semimartingale for some ν > 0 and is represented
by

Xε(t, x, ξ; s) = exp

(∫ t

s

−divx(aR(Ψε,R
θ,t (x, ξ)))dθ

)
X0(Ψε,R

s,t (x, ξ)), (A.1.4)

where ΨR is the inverse flow of the stochastic flow associated to the stochastic characteristic system
coming from (A.1.3).

Remark A.1. The stochastic characteristic system associated to (A.1.3) is the following
dϕε,R,0t =

Λ(ϕε,R,1t , . . . , ϕε,R,Nt )

ε
dt− 1

4
∂ξG

R,2(ϕε,Rt )dt+

d∑
k=1

gRk (ϕε,Rt ) ◦ dβk(t),

dϕε,R,it = aRi (ϕε,Rt )dt pour i = 1, . . . , N,

dηε,Rt = ηε,Rt (−divx(aR(ϕε,Rt )))dt.

(A.1.5)

We notice that in our case, it still presents a dependence on ε.

We denote by Sε,R the solution operator of (A.1.3). We have

Sε,R(t, s) = exp

(∫ t

s

−divx(aR(Ψε,R
θ,t (x, ξ))))dθ

)
X0(Ψε,R

s,t (x, ξ)). (A.1.6)

The domain of definition of the solution operator can be extended to X0 only defined almost
everywhere since diffeomorphisms preserve sets of measure zero. Nevertheless, the resulting process
will no longer be a strong solution. We obtain the following properties for the operator Sε,R.
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Proposition A.2. Let R > 0, ε > 0 and Sε,R = {Sε,R(t, s), 0 ≤ s ≤ t ≤ T} be defined as
previously. Then

(i) Sε,R is a family of bounded linear operators on L1(Ω×TN ×R) with a unit operator norm,
meaning for any X0 ∈ L1(Ω×TN ×R), 0 ≤ s ≤ t ≤ T ,

‖Sε,R(t, s)X0‖L1(Ω×TN×R) ≤ ‖X0‖L1(Ω×TN×R). (A.1.7)

(ii) Sε,R verifies the semi-group law

Sε,R(t, s) = Sε,R(t, r) ◦ Sε,R(r, s), 0 ≤ s ≤ r ≤ t ≤ T,
Sε,R(s, s) = Id, 0 ≤ s ≤ T. (A.1.8)

Sketch of the proof. The proof being essentially the same as the one in [10], let us only recall here
the main ideas and insist on what is a bit different in our case. The idea is the following: we
first work with a regularized initial data Xδ

0 defined as follows Xδ
0 (ω) = (X0(ω) ∗ hδ)kδ where

(kδ) is a smooth truncation on R i.e. kδ(ξ) = k(δξ) in order to build a unique strong solution
Xε,δ = Sε,R(t, s)Xδ

0 to the following system{
dXε,δ + divx(aR(x, ξ)Xε,δ)dt+

Λ(x)

ε
∂ξX

ε,δdt = −∂ξXε,δΦRdW +
1

2
∂ξ(G

R,2∂ξX
ε,δ)dt,

Xε,δ(s) = Xδ
0 .

(A.1.9)
The aim is the following: we integrate the equation (A.1.9) with respect to the variables ω, x, ξ
and get

E
∫
TN

∫
R

Xε,δ(t, x, ξ)dξdx + E
∫ t

s

∫
TN

∫
R

divx(aR(x, ξ)Xε,δ(r, x, ξ))dξdxdr

+ E
∫ t

s

∫
TN

∫
R

Λ(x)

ε
∂ξX

ε,δ(r, x, ξ)dξdxdr

= E
∫
TN

∫
R

Xδ
0 (x, ξ)dξdx− E

∫ t

s

∫
TN

∫
R

∂ξX
ε,δ(r, x, ξ)ΦRdWdξdxdr

+ E
∫ t

s

∫
TN

∫
R

1

2
∂ξ(G

R,2(x, ξ)∂ξX
ε,δ(r, x, ξ))dξdxdr. (A.1.10)

Then, we want to show that all the terms disappears except for the first term of the left-hand side
and the first term of the right-hand side. Let us first focus on the stochastic integral. All we need
to do is:

(1) Prove that this integral is a well defined martingale with zero expected value.

(2) Use the stochastic Fubini theorem to interchange integrals with respect to x, ξ and the
stochastic one.

Then we will have proven the disappearance of the second term of the right-hand side.

In order to do (1), we must prove that E
∫ t
s
|∂ξXε,δ(r, x, ξ)gR,2k |dr < +∞. The expression of Xε,δ

being slightly more complicated in our case, we must claim that not only ∂ξΨ
ε,R
s,r (x, ξ) but also

∂xiΨ
ε,R
s,r and ∂ξ∂xiΨ

ε,R
s,r for i = 1, . . . , N solves a backward stochastic differential equations with

bounded coefficients (see [13, Theorem 4.6.5 and Corollary 4.6.6]) since gRk , Xδ
0 and all the partial

derivatives of all order of aRi for i = 1, . . . , N are bounded. Thus, those solutions possess moments
of any order which are bounded in 0 ≤ s ≤ t ≤ T , x ∈ TN , ξ ∈ R. By assumption (2.0.7), we have
divx(a(x, ξ)) ≥ 0 for all x, ξ which leads to the statement (1).
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To prove (2), we must establish that

∫
TN

∫
R

(
E
∫ T

s

(|∂ξXε,δgRk (x, ξ)|2)dr

)1/2

dξdx < +∞. (A.1.11)

By the expression (A.1.4) of Xε,δ , we know that ∂ξX
ε,δ only contain terms mentionned previously

which all are bounded or possess moments of any order which are bounded. Then it is enough to
prove that Xε

0(Ψε,R
s,r (x, ξ)) and ∇x,ξXε

0(Ψε,R
s,r (x, ξ)) are compactly supported in ξ for all s, r, x,P−

a.s. thanks to some growth control on the stochastic flow to conclude (for more details see [10]).

Finally, the second term of the left-hand side disappears thanks to periodic boundary conditions
and the third terms of the left-hand side and the right-hand side disappears because of the support
compact in ξ of respectfully Xε,δ and GR,2. Therefore at the end, we obtain

E
∫
TN

∫
R

Xε,δ(t, x, ξ)dξdx = E
∫
TN

∫
R

Xδ
0 (x, ξ)dξdx. (A.1.12)

The statement (i) of Proposition A.2 is then obtained by passing to the limit in δ and a use of the
Fatou lemma. The statement (ii) of Proposition A.2 is straightforward using the flow property of
Ψ.

Moreover, a use of the regularization Xδ
0 together with the dominated convergence theorem and

the dominated convergence theorem for stochastic integrals directly leads to the following result:

Corollary A.3. Let R > 0. If X0 is a Fs ⊗ B(TN )⊗ B(R)- measurable initial data belonging to
L∞(Ω × TN ×R), then there exists a weak solution Xε ∈ L∞Ps(Ω × [s, T ] × TN ×R) to (A.1.3)

meaning for any φ ∈ C∞c (TN ×R), a.e. t ∈ [s, T ], P a.s.,

< Xε(t), φ >=< Xε(0), φ > +

∫ t

s

< Xε(r), aR.∇φ > dr +
1

ε

∫ t

s

< Xε(r),Λ(x)∂ξφ > dr

+

d∑
k=1

∫ t

s

< Xε(r), ∂ξ(g
R
k φ) > dβk(r) +

1

2

∫ t

s

< Xε(r), ∂ξ(G
R,2∂ξφ) > dr. (A.1.13)

Moreover, Xε is represented by Xε = Sε,R(t, s)X0. In particular, t 7→< Sε,R(t, s)X0, φ > is a
continuous (Ft)t≥s- semimartingale.

Remark A.2. We point out that in our situation, with the presence of the term divx(aR(x, ξ))
which is not necessary equal to zero, the use of the commutation lemma of Di Perna-Lions ([7,
Lemma II.1]) proves that the uniqueness of a weak solution no longer holds precisely in the case
where divx(aR(x, ξ)) is not equal to zero.

A.2 Passage to the non truncated problem

Our aim is to derive the existence of a weak solution to{
dXε + divx(a(x, ξ)Xε)dt+

Λ(x)

ε
∂ξX

εdt = −∂ξXεΦdW +
1

2
∂ξ(G

2∂ξX
ε)dt,

Xε(s) = X0.
(A.2.1)

Proposition A.4. If X0 is a Fs ⊗ B(TN )⊗ B(R)- measurable initial data belonging to L∞(Ω×
TN ×R), then there exists a weak solution Xε ∈ L∞Ps(Ω× [s, T ]×TN ×R) to (A.2.1). Moreover,
it is represented by

Sε(t, s)(ω, x, ξ) := lim
R→+∞

[Sε,R(t, s)X0](ω, x, ξ), 0 ≤ s ≤ t ≤ T. (A.2.2)
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Proof. We denote τR(s, x, ξ) = inf{t ≥ s, |ϕε,R,0s,t (x, ξ)| > R
2 } with the convention inf ∅ = T .

τR(s, x, ξ) is a stopping time with respect to the filtration (Ft)t≥s for any s ∈ [0, t], x ∈ TN ,
ξ ∈ R. For more clarity, we do not write the dependence on s, x, ξ of τR in the following.

Let us first prove that (τR)R∈N is a non decreasing sequence such that τ∞ := lim
R→∞

τR is equal to

T almost surely. We know that for any R > 0, the process ϕε,R,0 satisfies the equation

dϕε,R,0t =
Λ(ϕε,R,1t , . . . , ϕε,R,Nt )

ε
dt+

d∑
k=1

gRk (ϕε,Rt )dβk(t). (A.2.3)

We denote τ̃R := inf{τR, τR+1}. The equations satisfy by ϕε,R,0t and ϕε,R+1,0
t being exactly

the same on [0, τ̃R], then the coefficients being at least Lipschitz we know that ϕε,R,0s,t (x, ξ) =

ϕε,R+1,0
s,t (x, ξ) for t ∈ [0, τ̃R]. So, we get that τR ≤ τR+1. Indeed, let us reason by absurd and

suppose that τR > τR+1. Then for t ∈ [τR+1, τR], we have

|ϕε,R,0s,t (x, ξ)| = |ϕε,R+1,0
s,t (x, ξ)| > R+ 1

2
>
R

2

which is a contradiction with the fact that τR is the infimum of the times realizing this condition.
So the sequence (τR)R∈N is a non decreasing and we can define the almost sure limit

τ∞ := lim
R→∞

τR. (A.2.4)

We know that τ∞ is still a stopping time. We denote by ϕε,R,0s,t (x, ξ) = ϕε,R,0s,t (x, ξ) for t ∈ [0, τR].
The process is defined on [0, τ∞] and it is a solution of

dϕε,R,0t =
Λ(ϕε,R,1t , . . . , ϕε,R,Nt )

ε
dt+

d∑
k=1

gk(ϕε,Rt )dβk(t). (A.2.5)

Let us now establish some useful estimates to conclude:

ϕε,R,0s,t = ϕε,R,0in +

∫ t

s

Λ(ϕε,R,1r , . . . , ϕε,R,Nr )

ε
dr +

∫ t

s

d∑
k=1

gRk (ϕε,Rr )dβk(r)

|ϕε,R,0s,t |2 ≤ C

|ϕε,R,0in |2 +

(∫ t

s

∣∣∣∣Λ(ϕε,R,1r , . . . , ϕε,R,Nr )

ε

∣∣∣∣ dr)2

+

∣∣∣∣∣
∫ t

s

d∑
k=1

gRk (ϕε,Rr )dβk(r)

∣∣∣∣∣
2
.

Thus by taking the expectation, using well-known results on martingales and assumption (2.0.10),
we get

E|ϕε,R,0s,t |2 = C

(
E|ϕε,R,0in |2 +

M2T 2

ε2
+ E

∫ t

s

|
d∑
k=1

gRk (ϕε,Rr )|2dr

)
≤ C

(
E|ϕε,R,0in |2 +

M2T 2

ε2
+ E

∫ t

s

(1 + |ϕε,R,0s,t |2)dr

)
≤ C

(
E|ϕε,R,0in |2 +

M2T 2

ε2
+ T + E

∫ t

s

|ϕε,R,0s,t |2dr
)
.

Indeed, Λ being continuous on TN compact, there exists a constant M such that for all x ∈ TN ,
|Λ(x)| ≤M . By Gronwall lemma, we obtain

E|ϕε,R,0s,t |2 ≤ C (E|ϕε,R,0in |2 +
M2T 2

ε2
+ T ) exp (CT ) =: C1(ϕε,R,0in , T, ε). (A.2.6)
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Moreover, we also have the following

sup
t∈[s,T ]

∣∣∣ϕε,R,0s,t

∣∣∣2 ≤ C

(
|ϕε,R,0in |2 + sup

t∈[s,T ]

∣∣∣∣∫ t

s

Λ(ϕε,R,1r , . . . , ϕε,R,Nr )

ε
dr

∣∣∣∣2
+ sup
t∈[s,T ]

∣∣∣∣∣
∫ t

s

d∑
k=1

gRk (ϕε,Rr )dβk(r)

∣∣∣∣∣
2
. (A.2.7)

By the same arguments as previously, we deduce that

E sup
t∈[s,T ]

|ϕε,R,0s,t |2 ≤ C

E|ϕε,R,0in |2 +
M2T 2

ε2
+ E sup

t∈[s,T ]

∣∣∣∣∣
∫ t

s

d∑
k=1

gRk (ϕε,Rr )dβk(r)

∣∣∣∣∣
2


≤ C

(
E|ϕε,R,0in |2 +

M2T 2

ε2
+ 4

∫ T

s

E|
d∑
k=1

gRk (ϕε,Rr )|2dr

)

≤ C

(
E|ϕε,R,0in |2 +

M2T 2

ε2
+

∫ T

s

E(1 + |ϕε,R,0s,t |2)dr

)

≤ C

(
E|ϕε,R,0in |2 +

M2T 2

ε2
+ T +

∫ T

s

E|ϕε,R,0s,t |2dr

)

≤ C

(
E|ϕε,R,0in |2 +

M2T 2

ε2
+ T +

∫ T

0

C1(ϕε,R,0in , T, ε)dr

)
=: C2(ϕε,R,0in , T, ε).

(A.2.8)
Finally, applying the Markov inequality, we get

P

(
sup
t∈[s,T ]

|ϕε,R,0s,t | ≥
R

2

)
≤ 4

R2
E

(
sup
t∈[s,T ]

|ϕε,R,0s,t |2
)

≤ 4 C2(ϕε,R,0in , T, ε)

R2

(A.2.9)

and then

P

(
sup
t∈[s,T ]

|ϕε,R,0s,t | <
R

2

)
≥ 1− 4 C2(ϕε,R,0in , T, ε)

R2
. (A.2.10)

(τR)R∈N being a non decreasing sequence, we finally obtain that P(τ∞ = T ) = 1 passing to the
limit in R.

Still because of uniqueness we have Sε,R+1(t, s)X0 = Sε,R(t, s)X0 on [0, τR(s, x, ξ)]. So, we define

Sε(t, s)X0(ω, x, ξ) := lim
R→+∞

[Sε,R(t, s)X0](ω, x, ξ), 0 ≤ s ≤ t ≤ T. (A.2.11)

which is a solution to (A.2.1).

Corollary A.5. We have the following properties:

(i) Sε = {Sε(t, s), 0 ≤ s ≤ t ≤ T} is a family of bounded operators on L1(Ω ×TN ×R) with a
unit operator norm meaning for any X0 ∈ L1(Ω×TN ×R), 0 ≤ s ≤ t ≤ T ,

‖Sε(t, s)X0‖L1(Ω×TN×R) ≤ ‖X0‖L1(Ω×TN×R). (A.2.12)

(ii) Sε,R verifies the semi-group law

Sε(t, s) = Sε(t, r) ◦ Sε(r, s), 0 ≤ s ≤ r ≤ t ≤ T,
Sε(s, s) = Id, 0 ≤ s ≤ T. (A.2.13)

22



The proof is straightforward using the definition of Sε and Proposition A.2.
We can conlude to the existence of a solution for the stochastic kinetic equation.

Proposition A.6. For any ε > 0, there exists a weak solution of the stochastic BGK equation
with a high field scaling denoted by Fε. Moreover, Fε is represented by

Fε(t) = e−t/εSε(t, 0)1u0>ξ +
1

ε

∫ t

0

e−
t−s
ε Sε(t, s)1uε(s)>ξds. (A.2.14)

Sketch of the proof. Noticing that Fε is not integrable with respect to ξ, we introduce the process
hε(t) := Fε − Sε(t, 0)10>ξ. Then, by Proposition A.4, we get that hε solves the following system

dhε + divx(a(x, ξ)hε)dt+
Λ(x)

ε
∂ξh

εdt =
(1uε>ξ − Sε(t, 0)10>ξ)− hε

ε
dt− ∂ξhεΦdWt

+
1

2
∂ξ(G

2∂ξh
ε)dt,

hε(0) = χu0
.

(A.2.15)
The proof is then quite classical. Indeed, using Duhamel’s formula, the problem (A.2.15) can be
rewritten as follows

hε(t) = e−t/εSε(t, 0)χu0
+

1

ε

∫ t

0

e−
t−s
ε Sε(t, s)

[
1uε(s)>ξ − S

ε(s, 0)10>ξ

]
ds (A.2.16)

and it is then reduced to a fixed point method. We define the mapping L:

(Lg)(t) = e−t/sSε(t, 0)χu0 +
1

ε

∫ t

0

e−
t−s
ε Sε(t, s)

[
1v(s)>ξ − Sε(s, 0)10>ξ

]
ds (A.2.17)

where v(s) =
∫
R

(g(s, ξ)+Sε(s, 0)10>ξ−10>ξ)dξ. We show that the mapping L is a contraction on
L∞(0, T ;L1(Ω×TN )) using Corollary A.5 and assumptions on the initial data (see [10] for more
details). Then we can conclude to the existence of a unique fixed point hε in L∞(0, T ;L1(Ω×TN )).
Moreover, using the properties of the solution operator of Corollary A.5 and using the fact that
χu0

= 1u0>ξ − 10>ξ, we finally obtain

Fε(t) = hε(t) + Sε(t, 0)10>ξ

= e−t/εSε(t, 0)1u0>ξ +
1

ε

∫ t

0

e−
t−s
ε Sε(t, s)1uε(s)>ξds

(A.2.18)

which concludes the proof.

Remark A.3. As a consequence of Corollary A.3, Fε(t) satisfies the following : t 7→< Fε(t), φ >
is a continuous (Ft)- semimartingale for any φ ∈ C∞c (TN ×R).
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