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1 Introduction

As we said in [HR80], “the idea of well posed problems of mathematical
physics was introduced and sudied by Hadamard in the 1920s [Had52]. The
term ’well posed’ for initial and boundary-value problems in the modern
literature has come to be defined to mean that (i) the problem has a solution,
(ii) the solution is unique, (iii) the solution depends continuously on data
defining the problem. The first two parts of this definition have a precise
meaning but the third is indefinite as to what constitutes ’data’ “.

Continuity of the solution with respect to data is a classical theme ; for
evolution equation this is usually restricted to continuity with respect to
initial data and right hand side. Here we are interested in continuty with
respect to coefficients appearing in the bilinear forms (or in the coefficient of
the operators involved in the partial differential equations) or in the shape
of the domain Ω in which the system is posed. Many papers have adressed
the sensitivity of static structures : see for examples [HCK86], [GM97] ; some
examples of static structures with geometric non linearities and instabilities
has been considered in [Aub95], [AR98] ; a case of a thermal problem in
[DKR97], [DR99a], [DR99b]. From a mathematical point of view, as noted
previously in [Rou82b], the classical implicit function theorem is not appli-
cable for equations of Petrowsky type ; this is due to the following fact :
with a right hand side in L2(0, T, L2(Ω)), the solution is not in gneral in
L2(0, T, H2m(Ω)), see for example in paragraph 5.1.3 of [LM68a]. In these
conditions, the partial differential operator is not an isomorphism which
prevents the use if a classical implicit theorem.

We present here some abstract lipschitz continuity and differentiablity
results which would lead to the same kind of properties for shape sensiti-
vity (already considered in [Rou82b], [Rou82a]) or thickness sensitivity (see
[Rou83]) of dynamically loaded structures. A recent related result may be
found in [CZ99].

But the goal of this paper is also to start to adress the sensitivity of
controlled systems. In the oral presentation at the conference FGI 2000, we
tried to adress the sensitivity of an exactly controled continuous system. In a
private discussion, F. Bonnans pointed out that the approach is quite general
as documented in his recent book [JFB00]. We try to show the applicability
with some examples. Independently design sensitivity has been considered in
([Mau], [Mal96], [Mal00]). We consider the sensitivity of a classical abstract
optimal control problem to present the approach.

Shape sensitivity of piezoelectric wafers mounted on a plate has been
considered in [DS97] for the approximation with a finite number of modes.
We consider two situations : classical optimal control and exact control in
finite time. The term exact control means that the control actuator should
bring the system to rest in a given finite time T such that y(T, x) =
0, yt(T, x) = 0. This is somewhat different of stabilizing the system and has
been a field of active research for systems modeled by partial differentiable
equations since the work of J.L. Lions ([Lio88]) and numerical approxima-
tions and implementations ([GL95, GL96]) ; the use of eigenfunctons for
exact control (see [Bou99]) enables to compute exact control within a rea-
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sonable computing time and so the optimal design of such exactly controled
systems becomes also reasonable. In this paper we restrict the approach to
a model of smart beam used in [Des99] but the approach is very general and
can be applied quite easily for shape sensitivity of controled systems ; such
extensions are in preparation.

As we consider beams of variable thickness, the partial differential equa-
tion involves variable coefficients ; in the situation of exact control, the
controlability issue seems still open. In this paper, we assume that controla-
bility is satisfied. In the situation of classical optimal control, the existence
of an optimal control may be obtained classically by lower semi continuity.
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2 Sensitivity of a controled system

Let us consider the classical abstract optimal control problem of mini-
mizing :

J(u, y) =
1
2
(u, u) +

r

2
(y, y) (2.1)

with the constraint

Ay = Bu + f (2.2)

For simplicity, we may assume that u ∈ Rm, y ∈ Rn and B ∈ L(Rm,∈ Rn)
and A symetric positive definite on Rn. But the process is very general and
A may be a partial diffential operator. Naturally in this case, the proofs may
be very difficult. Introducing the Lagrangian

L(y, u, p) = J(u, y) + (p, Ay −Bu− f) (2.3)

with the Lagrange multiplier p ∈ Rn, we get easily the optimality system :

∂L
∂p

= 0 yields Ay = Bu + f (state) (2.4)

∂L
∂u

= 0 yields u = B∗p (optimality) (2.5)

∂L
∂y

= 0 yields Ap = −ry ( adjoint state) (2.6)

Let us consider the case where A and B are dependent on a design para-
meter e ∈ Rk ; in practice it may be a design variable taking into account the
amount of material involved ; it is then natural to look for the minimization
of J with a given quantity of material :

k∑
i=1

ei = c a given constant (2.7)

To write optimality conditions or for optimization algorithms the sensitivity
is needed :

j(e) = J(u(e), y(e)) (2.8)
∂j

∂e
de =

∂J

∂y
dy +

∂J

∂u
or here (2.9)

∂j

∂e
de = r(y,

∂y

∂e
de) + (u,

∂u

∂e
de) (2.10)

∂y
∂e

∂u
∂e are derivatives of implicit functions and an explicit expression of this

derivative is needed. These derivatives are solution of the optimality system
differentiated with respect ot the design parameter e :

Ady −Bdu = dAy − dBu (2.11a)
du−B∗dp = −dB∗p (2.11b)
rdy + Adp = −dAp (2.11c)
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This system has the same operators as the ones involved in the optimality
system 2.4 ; if the optimal control system is well posed, they define an iso-
morphism and the implicit function theorem gives the differentiability of
y, u, p with respect to e.

We note that ∂y
∂e and ∂u

∂e may be obtained by solving this system but
it is more convenient to use directly the Lagrangian

j(e) = L(y, u, p) =
1
2
(u, u) +

r

2
(y, y) + (p, Ay −Bu− f) (2.12)

where y(e), u(e), p(e) are implicit functions of of e defined by the optimality
system. By differentiation we get :

dj = (u, du) + r(y, dy)+ (2.13)
(p, Ady −Bdu + dAy − dBu)+ (2.14)

(dp,Ay −Bu− f) (2.15)

or manipulating :

dj = (u−B∗p, du) + (ry + Ap, dy)+ (2.16)
(dp,Ay −Bu− f) + (p, dAy − dBu) (2.17)

and we notice that

dj =
∂L
∂u

du +
∂L
∂y

dy +
∂L
∂p

dp +
∂L
∂e

de (2.18)

so that using the optimality system (2.4) :

dj =
∂L
∂e

de = (p, dAy − dBu) (2.19)

We note that the approach is very general.
We can easily derive necessary optimality conditions by introducing a

Lagrange multiplier for the constraint 2.7 :

(p,
∂A

∂ei
y − ∂B

∂ei
u) + λ = 0 i = 1, ...k (2.20)
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3 Second order evolution equation

We denote Ω, a bounded open subset of Rn ; it will be usually with
a C∞ boundary Γ and situated locally on one side of Γ. We consider a
Hilbert space V (Ω) with Hm

0 (Ω) ⊆ V (Ω) ⊆ Hm(Ω) ; m is also the order
of derivatives appearing in the bilinear form a(y, p) ; it is assumed to be
symmetric, continuous, coercive on V . It depends on design variable h which
may be either a parameter appearing in the equation such as thickness of a
structure of variable thickness or the shape of the boundary Γ. For equations
arising in solid mechanics, a denotes virtual work of internal forces, c, the
virtual work of inertial forces and (f, p), the virtual work of external forces
with p the virtual displacement.

The folowing hypothesis will be assumed throughout the paper.

Hypothesis 1. a is a symmetric bilinear form coercive on V

Hypothesis 2. c is a symmetric bilinear form coercive on L2(Ω)

Hypothesis 3. for simplicity, we assume that the bilinear forms are not
time dependent.

We consider the abstract equation :

d

dt
c(

∂y

∂t
, p) + a(y, p) = (f, p) (3.1)

We recall the following theorems from [LM68a] ; in fact we are mainly recal-
ling a priori inequalities which are in the proof of the quoted theorems.

Theorem 1. Theorem 3 .8.1 of [LM68a]

‖y‖2
V + ‖∂y

∂t
‖2

L2(Ω) ≤ c

(
‖y0‖2

V + ‖y1‖2
L2(Ω) +

∫ T

0
‖f(t)‖2

L2(Ω)

)
(3.2)

Theorem 2. (from proof of Theorem 3 .9.3 of [LM68a])

‖y‖2
L2(Ω) + ‖∂y

∂t
‖2

V ′ ≤ c

(
‖y0‖2

L2(Ω) + ‖y1‖2
V ′ +

∫ T

0
‖f(t)‖2

V ′

)
(3.3)

Theorem 3. (from proofs of theorem 5.2.1 and lemma 5.2.1 of [LM68b])

‖∂y

∂t
‖2

Hm(Ω) + ‖∂2y

∂t2
‖2

L2(Ω) ≤ c

[
‖y0‖2

H2m(Ω) + ‖y1‖2
Hm(Ω) +

∫ T

0
‖∂f

∂t
‖2

L2(Ω)

]
(3.4)

‖y‖2
H2m(Ω) ≤ c

[
‖y0‖2

H2m(Ω) + ‖y1‖2
Hm(Ω) +

∫ T

0
‖f(t)‖2

L2(Ω) +
∫ T

0
‖∂f

∂t
‖2

L2(Ω)

]
(3.5)

Corollary 1. With zero initial data :

‖∂y

∂t
‖2

H2m(Ω) ≤ c

[∫ T

0
‖f(t)‖2

Hm(Ω) +
∫ T

0
‖∂2f

∂t2
‖2

L2(Ω)

]
(3.6)

The proof is based on theorem 5.7.1 of [LM68b] and the use of theorem
of intermediate derivatives (theorem 1.2.3 of [LM68a]).
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4 Lipschitz continuity of the solution with respect
to design variables

This section is devoted to Lipschitz continuity of the solution with res-
pect to design variables while the following is considering differentiability
with respect to design variables.

Two situations will be considered one with additional regularity on the
data, one with basic regularity on the data.

notations : We denote h, the design variable ; ah(z, p), the bilinear
form for the value h of the design variable ; δa = ah+δh − ah and similarly
δy = yh+δh − yh, δf = fh+δh − fh

4.1 With basic regularity

Hypothesis 4 (Lipschitz 1).

f ∈ L2(0, T, L2(Ω)), y0 ∈ V, y1 ∈ L2(Ω) (4.1)
∀z ∈ V ∀p ∈ V |δa(z, p)| ≤c‖δh‖X‖z‖V ‖p‖V (4.2)

‖δCz‖V ′ ≤ c‖δh‖X‖z‖V ′ ∀p ∈ V |(δf, p)| ≤c‖δh‖X‖p‖V (4.3)

Proposition 1. With hypothesis 4
we have :

‖δy‖2
L2(Ω) + ‖δẏ‖2

V ′ ≤ c‖δh‖2
X

∫ T

0
‖y‖2

V (4.4)

or h 7−→ y is lipschitzian from X to L∞(0, T, L2(Ω)) and h 7−→ ẏ is lip-
schitzian from X to L∞(0, T, V ′).

4.2 With additional regularity

Let us denote A, the operator from H2m(Ω) to L2(Ω) associated to the
bilinear form a and C, the oerator in L2(Ω)) associated to the bilinear form
c.

Hypothesis 5 (Lipschitz 2).

f ∈ L2(0, T, L2(Ω)),
∂f

∂t
∈ L2(0, T, L2(Ω)) y0 ∈ H2m(Ω), y1 ∈ Hm(Ω)

(4.5)

∀z ∈ H2m(Ω) ‖δAz‖L2(Ω) ≤c‖δh‖X‖z‖H2m(Ω) (4.6)

|(δf, p)| ≤c‖δh‖X‖p‖L2(Ω) (4.7)

‖δCz‖L2(Ω) ≤c‖δh‖X‖z‖L2(Ω) (4.8)

Proposition 2. With hypothesis 5
we have :

‖δy‖2
Hm(Ω) + ‖δẏ‖2

L2(Ω) ≤ c‖δh‖2
X

∫ T

0
‖y‖2

H2m(Ω) (4.9)

or e 7−→ y is lipschitzian from X to L∞(0, T, V ) and e 7−→ ẏ is lipschitzian
from X to L∞(0, T, L2(Ω))
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With still some more regularity, we get the following proposition ; it
was proved in the context of shape sensitivity in [Rou82b], chapter 4 and
presented in [Rou82a],[Rou83]. We state it here in an abstract setting.

Hypothesis 6 (Lipschitz 3).

f ∈ L2(0, T, L2(Ω)),
∂f

∂t
∈L2(0, T, L2(Ω)),

∂2f

∂t2
∈ L2(0, T, L2(Ω))

(4.10)

y0 ∈ H2m(Ω), y1 ∈ Hm(Ω) (4.11)

∀z ∈ H2m(Ω) ‖δAz‖L2(Ω) ≤c‖δh‖X‖z‖H2m(Ω) (4.12)

|(δf, p)| ≤c‖δh‖X‖p‖L2(Ω) (4.13)

|(δ ∂f

∂t
, p)| ≤c‖δh‖X‖p‖L2(Ω) (4.14)

‖δCz‖L2(Ω) ≤c‖δh‖X‖z‖L2(Ω) (4.15)

Proposition 3. With hypothesis 6 we have :

‖δy‖2
H2m(Ω) + ‖δẏ‖Hm(Ω)2 + ‖δÿ‖2

L2(Ω) ≤ c‖δh‖2
X

∫ T

0

(
‖y‖2

H2m(Ω) + ‖ẏ‖2
H2m(Ω)

)
(4.16)

or e 7−→ y is lipschitzian from X to L∞(0, T, V ) and e 7−→ ẏ is lipschitzian
from X to L∞(0, T, L2(Ω))

Proof of previous propositions.
We denote with ˙ the time derivative. The proof is based on the simple

remark that δy is solution of :

∀p ∈ V c(δÿ, p) + a(δy, p) = −δc(ÿh+δh, p)− δa(yh+δh, p) + (δf, p) (4.17)

For proposition 1, we first use theorem 1 ; we obtain that y is in L2(0, T, V )
so that the right hand side of 4.17 is in L2(0, T, V ′). Now we apply estimation
(3.3) to equation 4.17 ; the initial conditions of equation 4.17 are zeros so
that :

‖δy‖2
L2(Ω) + ‖δẏ‖2

V ′ ≤ c

∫ T

0
‖δAy‖2

V ′ + ‖δf‖V ′ (4.18)

with hypothesis 4 (Lipschitz 1) we get (4.4).
For proposition 2, we first use theorem 3 ; we obtain that y is in L2(0, T, H2m(Ω))

so that the right hand side of (4.17) is in L2(0, T, L2(Ω)) ; Now we apply esti-
mation 3.2 to equation 4.17 ;the initial conditions of equation 4.17 are zeros
so that :

‖δy‖2
Hm(Ω) + ‖δẏ‖2

L2(Ω) ≤ c

∫ T

0
‖δAy‖2

L2(Ω) + ‖δf‖L2(Ω) (4.19)

For proposition 3 , we first use theorem 3 ; we obtain that y is in
L2(0, T, H2m(Ω)) ; with 1, we get also that ẏ is in L2(0, T, H2m(Ω)) ; now we
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get that the right hand side of (4.17) is in L2(0, T, L2(Ω)) and also its time
derivative ; now we use again theorem 3 to obtain :

‖δy‖2
H2m(Ω) + ‖δẏ‖2

Hm(Ω) + ‖δÿ‖2
L2(Ω) ≤ (4.20)

c‖δh‖2
X

∫ T

0
{‖δAy‖2

L2(Ω) + ‖δCÿ‖2
L2(Ω) + ‖δf‖2

L2(Ω)+ (4.21)

‖δAẏ‖2
L2(Ω) + ‖δCÿ′‖2

L2(Ω) + ‖δḟ‖2
L2(Ω)} (4.22)

and we conclude with the estimations assumed in hypothesis 6 of the pro-
position.

5 Differentiability with respect to design variables

5.1 Differentiablity of the solution

Let us first consider equation 3.1 formally differentiated with respect to
an abstract design variable h ∈ X. We denote da(z, p) = ∂a(z,p)

∂h dh where
the derivative is considered with z and p being fixed ; similarly dy = ∂y

∂hdh
denotes a differential considered with x being fixed ; it is the derivative of
h 7−→ yh(x).

∀p ∈ V c(dÿ, p) + a(dy, p) = −dc(ÿ, p)− da(y, p) + (df, p) (5.1)

Let us first consider this equation with hypothesis 4 ; with this assumtion
theorem 1 states that y ∈ V and ÿ ∈ V ′ ; the right hand side of 5.1 satisfies
hypothesis suitable for theorem 2 and we get that this equation has a solution
dy ∈ L2(Ω) and dẏ ∈ V ′. Unfortunately, the proof, with the hypothesis 4
that dy is indeed the differential of h 7−→ yh(x) would rely on estimates
which are not classical. It will be possible to prove it under hypothesis 7.

Hypothesis 7. we assume hypothesis 6 and moreover

∀z ∈ H2m(Ω) ‖dAz‖L2(Ω) ≤c‖dh‖X‖z‖H2m(Ω) (5.2)

‖dCz‖L2(Ω) ≤c‖dh‖X‖z‖L2(Ω) (5.3)

‖δ2Az‖L2(Ω) ≤c‖dh‖2
X‖z‖H2m(Ω) (5.4)

‖δ2Cz‖L2(Ω) ≤c‖dh‖2
X‖z‖L2(Ω) (5.5)

(5.6)

Theorem 4. Under hypothesis 7, the solution of 5.1 is the differential of

h 7−→ y h 7−→ ẏ (5.7)

X −→ L∞(0, T, V ) X −→ L∞(0, T, L2(Ω)) (5.8)

Proof starts by expanding all quantities up to second order : for example,
the bilinear form : ah+dh = ah + da + δ2a ; we consider equation 3.1 for the
value h+dh of the design variable and expand it up to second order ; we sim-
plify the expansion with equation 3.1 for the value h of the design variable
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and with the differentiated equation 5.1 ; we obtain after some manipula-
tions :

∀p ∈ V ch(δ2ÿ, p) + ah(δ2y, p) = (5.9)

−dc(δ̈y, p)− da(δy, p) + (δ2f, p)− δ2c(ÿh+dh, p)− δ2a(yh+dh, p) (5.10)

If we look at the right hand side, we notice that hypothesis 4 provides
δy ∈ L2(Ω) so that dAδy ∈ dAL2(Ω) ; the latter space is larger than V ′ ;
however it seems that the solution of this equation would be well defined by
using transposition theory (see [LM68b]) ; however estimates of the solution
does not seem standard so that we restrict the situation to hypothesis 7 ;
with this hypothesis, we know with proposition 3 that y, δy ∈ H2m(Ω) so
that the right hand side is in L2(Ω) and using theorem 1 :

‖δ2y‖2
V + ‖δ2ẏ‖2

L2(Ω) ≤ (5.11)

c

∫ T

0

(
‖dCδÿ‖2

L2(Ω) + ‖dAδy‖2
L2(Ω) + ‖δ2Cÿh+dh‖2

L2(Ω) + ‖δ2Ayh+dh‖2
L2(Ω)

)
and we conclude with the estimates of the hypothesis 7
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6 A smart beam model :

6.1 Euler Bernoulli beam model

Without transverse shear, the strain work is :

ae(y, ŷ) =
∫ l

0
EI(e)yxxŷxx (6.1)

where y denotes the normal deflection and ŷ the virtual normal deplacement.
Work of quantity of accelerations ( neglecting rotational inertia) :

ce(
∂2y

∂t2
, ŷ) =

∫ l

0
ρe

∂2y

∂t2
ŷ (6.2)

Work of external control forces : u1, u2, u3 :

L(ŷ) = Au1ŷ(t, a) + Bu2
∂ŷ

∂t
(t, a) +

∫ b

a
Cu3ŷ (6.3)

This is a possible mathematical model of the action of a piezoelectric wafer
on a beam as proposed in [Des99]. Let H2

0 (Ω) ⊂ V ⊂ H2(Ω). Principle of
virtual work

∀ŷ ∈ V ce(
∂2y

∂t2
, ŷ) + ae(y, ŷ) = L(ŷ) (6.4)

with initial conditions :

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) (6.5)

Lipschitz continuty and differentiability results of the previous section may
be applied easily to this model.

6.2 Control

If u1, u2 ∈ L2(0, T ) u3 ∈ L2(0, T, L2(Ω)), y0 ∈ L2(Ω), y1 ∈ V ′ as a
consequence of theorem 2, the solution of (6.4) is in V0 where

V0 = {φ ∈ L2(0, T, L2(Ω)), φ̇ ∈ L2(0, T, V ′)} (6.6)

Moreover if A = 0 B = 0 y0 ∈ V, y1 ∈ L2(Ω), as a consequence of theorem
1 the solution of 6.4 is in V1 where

V1 = {φ ∈, L2(0, T, V ), φ̇ ∈ L2(0, T, L2(Ω))} (6.7)

For control purposes, it is convenient to write the equations in weak form
with a test function that depends on time and space ; state equation with
initial conditions :

y(0, x) = y0(x)
∂y

∂t
(0, x) = y1(x) (6.8)

∫ T
0

∫ l

0
ρe

∂2y

∂t2
φ +

∫ T

0

∫ l

0
EI(e)yxxφxx = (6.9)

∫ T
0 Au1φ(t, a) + Bu2φx(t, a) +

∫ T

0

∫ b

a
Cu3φ

We consider two situations
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6.2.1 Optimal control

In this case we can consider the functional to minimize :

J(y, u) =
1
2

∫ b

a
‖y(x, T )‖2 +

1
2

∫ b

a
‖ ∂

∂t
y(x, T )t‖2

V ′

+
∫ T

0
(u2

1 + u2
2) +

1
2

∫ T

0

∫ b

a
u2

3 (6.10)

The existence of an optimal control may be obtained classically by using the
lower semi-continuity of the functional (see for example [C7́1]. In order to
derive the optimality conditions, we use the Lagrangian :

L(y, u; p, p0, p1) = J(y, u) + (6.11)∫ T

0

∫ l

0
ρe

∂2y

∂t2
p +

∫ T

0

∫ l

0
EI(e)yxxpxx +∫ T

0
{Au1p(t, a) + Bu2px(t, a)}+

∫ T

0

∫ b

a
Cu3p +∫ l

0

{
p1[y(0, x)− y0(x)] − p0[

∂y

∂t
(0, x)− y1(x)]

}
(6.12)

The optimality conditions may be written :

∂L
∂u

= 0 which gives : (6.13)

u1(t) + Ap(t, a) = 0; u2(t) + Bpx(t, a) = 0; (6.14)
u3(t, x) + Cp(t, x)χ[a,b] = 0 (6.15)

where the adjoint state p is solution of :

∂L
∂y

z = 0 which gives by integration by parts : (6.16)

−
∫ T

0

∫ l

0
ρe

∂2p

∂t2
z −

∫ T

0

∫ l

0
EI(e)zxxpxx+ (6.17)∫ l

0
< zt(T, x), yt(T, x)− ρ e p(T, x) >V ′ +

∫ l

0
< z(T, x), y + ρ e p,t(T, x)+

(6.18)∫ l

0
< p1 − ρ e p,t(0, x), z(0, x) > +

∫ l

0
< −p0 + ρ e p(0, x), z,t(0, x) >= 0

(6.19)

from which we get easily the final conditions for p and relations for p0, p1.

6.2.2 Exact control in final time

Functional to minimize :

J(v) =
1
2

∫ T

0
(u2

1 + u2
2) +

1
2

∫ T

0

∫ b

a
u2

3 (6.20)
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We minimize J with the final conditions.

y(T, x) = 0;
∂y

∂t
(T, x) = 0 (6.21)

Controlability of plates and beam have been adressed by Ph. Destuyn-
der ([Des99]) ; here we assume that there exists u such that (6.21) is satisfied.
A way to prove it, is to penalise the final conditions as proposed in ([Des99])
for constant thickness beams. Here beams are of variable thikness ; in this
case, the operator involves variable coefficients and exact control seems to
be an open problem ; in this paper, we assume that exact controlability is
satisfied.

The derivation of the expression of necessary optimality conditions in-
cluding the adjoint state is provided in an appendix ; it uses the same La-
grangian as for optimal control but with a different functional space : it
involves y(T, x) = 0 and ẏ(T, x) = 0.

6.3 Sensitivity of a smart beam

We consider design problems in which the fonctional is the one considered
for control. This is quite natural : the functional involved for control is
usually a combination of the energy provided to the actuator and a quadratic
mean of the displacement. We distinguish the case of optimal control and
exact control in finite time. In both cases the result may be obtained with the
Lagrangian we introduced in (6.11) for optimal control and in the appendix
for exact control. The design variable is the thickness e which depends on
x.

L(y, u; p, p0, p1) = J(y, u) + (6.22)

−
∫ T

0

∫ l

0
ρe

∂2y

∂t2
p−

∫ T

0

∫ l

0
EI(e)yxxpxx +∫ T

0
{Au1p(t, a) + Bu2px(t, a)}+

∫ T

0

∫ b

a
Cu3p +∫ l

0

{
p1[y(0, x)− y0(x)] − p0[

∂y

∂t
(0, x)− y1(x)]

}
(6.23)

The sensitivity of J(y, u) may be obtained by noticing that when ye is solu-
tion of the state equation, the following equality holds :

J(ye, ue) = L(ye, ue; pe, p0e, p1e) so that the derivative of (6.24)
j(e) = J(ye, ue) may be obtained with (6.25)
∂j

∂e
=

∂L
∂e

+
∂L
∂y

∂y

∂e
+

∂L
∂u

∂u

∂e
+

∂L
∂p

∂p

∂e
+ (6.26)

∂L
∂p0

∂p0

∂e
+

∂L
∂p1

∂p1

∂e
(6.27)

When ye, ue, pe, p0e, p1e are solutions of the optimality conditions, the only
non zero term is the first one ; so, the sensitivity of J(y, u) or the differential
of j(e) is provided by :

∂j

∂e
=

∂L
∂e

(6.28)
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6.3.1 Optimal control

For optimal control, J(y, u) is given by (6.10). The design variable is
the thickness e which depends on x. As indicated in the sensitivity of an
abstract optimal control problem, the sensitivity of j(e) = J(y(e), u(e))
may be computed simply with (2.19) ;

Proposition 4.

∂J

∂e
ẽ =

∂L
∂e

ẽ or here (6.29)

∂J

∂e
ẽ = −

∫ T

0

∫ l

0
ẽρ

∂2y

∂t2
p−

∫ T

0

∫ l

0
E

∂I(e)
∂e

ẽyxxpxx

where the adjoint state is solution of the adjoint equation (6.17).

6.3.2 Exact control

The design variable is still the thickness e which depends on x.

Proposition 5.

∂J

∂e
ẽ =

∂L
∂e

ẽ or here (6.30)

∂J

∂e
ẽ = −

∫ T

0

∫ l

0
ẽρ

∂2y

∂t2
p−

∫ T

0

∫ l

0
E

∂I(e)
∂e

ẽyxxpxx

where the adjoint state is solution of (6.33), (6.34), (6.35)

The proof uses the differentiated state equation in which we set φ = p
and integration by parts. Justification relies on the case without control
presented in section 5 ; shape and stuctural sensitivity of dynamic structures
was presented first in ([Rou82b, Rou82a, Rou83]). For design sensitivity, the
equations to be considered are the state equation (6.9) in which we replace
the control by its expression (7.5), the adjoint state equation (7.6), and
equation (7.10).∫ T

0

∫ l

0
ρe

∂2y

∂t2
φ−

∫ T

0

∫ l

0
EI(e)yxxφxx +∫ T

0
{A2p(t, a)φ(t, a) + B2px(t, a)φx(t, a)}+

∫ T

0

∫ b

a
Cpφ = 0(6.31)

y(T, x) = 0 = ẏ(T, x) (6.32)∫ T

0

∫ l

0
ρe

∂2p

∂t2
z +

∫ T

0

∫ l

0
EI(e)yxxpxx = 0 (6.33)

ρep(0, x)− p0(x) = 0, ρe
∂p

∂t
(0, x)− p1(x) = 0, (6.34)

p(t, x) = 0,
∂p

∂x
= 0 for (t, x) ∈ [0, T ]× {0, l} (6.35)

Λ
(

p0

p1

)
=

(
y1

−y0

)
which is equivalent to (6.36)

y(0, x) = y0(x) ẏ(0, x) = y1(x) (6.37)
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We aknowledge that the sensitivity of the state equation is justified only
in the case A = 0 = B by using theorem 4 ; then the righ hand side is in
L2(0, T, L2(Ω)). Nethertheless the computation is formally the same. The
proof of the general case is in preparation.

7 Appendix

In order to derive necessary optimality conditions for control problem
(6.20), (6.21) , we use a Lagrangian ; this is in contrast with Ph. Destuynder
([Des99]) and the introduction of exact controlabity by J.L. Lions ([Lio88])
where penalty arguments are mainly used. We consider the state equation
with final conditions and use Lagrange multipliers to enforce initial condi-
tions ; to simplify we assume that V = H2

0 (Ω) : mechanically it means that
the beam is clamped at both ends. The Lagrangian is written :

L(y, u; p, p0, p1) = (7.1)

J(u)−
∫ T

0

∫ l

0
ρe

∂2y

∂t2
p−

∫ T

0

∫ l

0
EI(e)yxxpxx +∫ T

0
{Au1p(t, a) + Bu2px(t, a)}+

∫ T

0

∫ b

a
Cu3p +∫ l

0

{
p1[y(0, x)− y0(x)] − p0[

∂y

∂t
(0, x)− y1(x)]

}
(7.2)

with

y ∈, C0([0, T ], L2(]0, l[) ∩ C1([0, T ], V ′) and y(T, x) = 0 = ẏ(T, x) (7.3)

u = (u1, u2, u3) ∈ L2(0, T )× L2(0, T )× L2(0, T, L2(]0, l[), (7.4)

then, ∂L
∂ui

= 0 yields :

u1(t) = −Ap(t, a), u2(t) = −B
∂p

∂x
(t, a), and for x ∈ [b, c], u3 = −Cp

(7.5)
∂L
∂p = 0 gives back the state equation and after integration by parts :

∂L
∂y z = 0 yields the adjoint state equation :∫ T

0

∫ l

0
ρe

∂2p

∂t2
z +

∫ T

0

∫ l

0
EI(e)yxxpxx = 0 (7.6)

with initial conditions :

ρep(0, x)− p0(x) = 0 ρe
∂p

∂t
(0, x)− p1(x) = 0 and boundary conditions :

(7.7)

p(t, x) = 0
∂p

∂x
= 0 x ∈ [0, T ]× {0, l} (7.8)

as we have assumed for simplicity that the beam is clamped at both ends.
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What are the differences with the situation of optimal control ?
There are no final conditions for the adjoint state and in the relations 7.7
p0 and p1 have to be determines in order to fullfill y(0, x) = y0(x) and
ẏ(0, x) = y1(x).

To study the necesary conditions, following J.L. Lions ([Lio88]), we in-
troduce :

Λ :
(

p0

p1

)
7−→

( ∂y
∂t (0, x)
−y(0, x)

)
(7.9)

The choice of the order of the target insures symetry and coercivity of Λ ;
and this implies controlability (ie existence of a control which brings the
state from given initial conditions to final conditions). The exact control is
given by (7.5) with p the adjoint state satisfying 7.7 and with p0, p1 being
solution of :

Λ
(

p0

p1

)
=

(
y1

−y0

)
(7.10)

Lemma 1. ∫ l

0
ρ e(p̃0, p̃1)Λ

(
p0

p1

)
= (7.11)∫ l

0
−p̃1y0(x) + p̃0

∂y

∂t
(0, x) =

−
(∫ T

0
Aũ1p(t, a) + Bũ2px(t, a) +

∫ T

0

∫ b

a
Cu3p

)
and

J(u1, u2, u3) =
1
2
(p0, p1)Λ

(
p0

p1

)
= (7.12)

1
2

∫ T

0
A2p(a)2 + B2p′(a)2 +

∫ T

0

∫ b

a
C2p2

This identity is derived from the adjoint state equation multiplied by the
state y and integrated by parts.

8 Conclusion

We have presented a general abstract approach for design sensitivity of
systems governed by variational second order evolution equations ; it encom-
passes some previous results of the author and is widely applicable. Its use
for design sensitivity of a model of a smart beam has been presented for
illustration. In formulas (6.29) and (6.30) , it should be emphasized that the
design sensitivity involves the adjoint state used for control but no adjoint
state for design sensitivity ; in this respect the situation is analogous to the
one encountered when we consider the sensitivity of the compliance of a
static structure. Other cases of application are in preparation.
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