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The strong linkage between damage and nonlinear elasticity of materials leads to
many researches in the field of nonlinear response of mechanical structures . Due
to severe mechanical environment conditions ( Vibration, Shock...), damage may
appear in structures. In a previous S & V symposium we have presented some
interesting experiments who have shown that non linear acoustic spectroscopy is
a very powerful technique in order to detect damage in structures The proposed
method consists of the observation of nonlinear responses obtained from an array
of sensors when the structure is excited by dual frequency sources : the low fre-
guency source yields the power while the second acts as a probe . The nonlinear
response is obtained by spectral analysis of signals coming from sensors , the re-
sponse amplitude is proportional to the local nonlinearity (failure nonlinear elastic
response) . Now we have developed the theoretical and mathematical approach of
the problem and we show a good correlation between the modeling and the ex-
periment. We explain also the ideas that are behind the concept of localization of
damage. We also show that this technique based on non linear acoustic is a good
concept in order to detect buried objects.
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1 Introduction

1.1 Orientation

Although there is an active investigation of experiments for non
destructive testing using non linear vibrations, there is a lack of models
and numerical solutions to compare with the experimental results.




2 Transverse vibrations: vibrating masses on
stretched cables in large displacement

As a very simplified model of the experiment described?jn e
consider n masses; attached to horizontal springs (or cables) which afe
submitted to a large tensidhy, at rest, see figufg 1; the tension is

positive when the cable is in traction which is assumed trough the
vibration; the masses are moving (vertically) transversely to the positign
of the springs at rest; we denote by upper case letters quantities in thejrest
position and lower case in the current configuration, except for the tengion

T; in the current configuration.




2.1 Masses in transverse displacement
2.1.1 Notations and assumptions

In a linear model of transverse vibration, it is usually assumed that the
tension is so large at rest that it remains constant during the vibration.
Here, due to large displacements the tension does depend on the cha
of length, we assume a linear elastic relation between tension and ch

of length. See the figufg 1 with two masses and 3 cables.

e [, length at rest]; length at timet; as the masses are moving
perpendicularly to the position of the cables at rest:

17 =L+ (yi — yi—1)®

¢ the change of tension of the linear elastic spring due to the
change of of length
T; = To + killi(y) — Li] = To + ki(\/L? + (yi — yi—1)? — L;);
this tension is directedlong the axis of the springand positively
oriented fromm,; to m; 1.

¢ Denote by;, the angle of theé!" spring with the horizontal axis; at
restd; = 0 we have

ge
ge



Using Newton law, the equations of dynamics are:
miyi” = —TZSZTL(QZ) + Ti+1sin(0i+1) + ./TZ 1=1...n (21)

where—T;sin(0;) + T;+1sin(0;+1) is the vertical component of the force
due to cables acting on massve assume no longitudinal movement so
that the longitudinal component of the force does not work. The applie
load on mass is denoted byF;.

|~

3 Transverse vibration: approximate non
dimensional equation for a small load

3.1 Introduction




It is not obvious to prescribe the right data to obtain clear
inter-modulation peaks; this is also a real trouble of the
experiments!

So itis very useful to obtain an asymptotic
expansion of the solution in order to determine
rough windows of the data for which
inter-modulation lobes are non negligildad to
relate the level of the inter-modulation lobes to the
level of the damagesee subsectign 4.2

10

For one d.o.f., the linearized equation is:

. 1 1 ~ .
miy = —TO(L—1 + L_Q)yl + Ficos(at) (3.1)

Approximate equation



Normalization We normalize time

1
To(=++=)\> . 5
W = (M) : ot e (3.3)

m w*’ w*

and displacement with the total lenth at rest:

And the differential equation may be approximated by a so-called Duffjng
equation:
d?u
dt?
with the small parameter:

= —u+eud+ Fcos(at) + ... (3.4)

€

g, (TO — kL1 Ty — k2L2>

© 2mw*? L3 L3
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Figure 2: Up: one damaged cable and 2 undamaged cables ; down: 3

undamaged cables

3.1.1 A possible damage of a cable

Here a simple breakage model of several fibers of a cable is addressef,
1 thic ecalicec decreace of riaidiky <av for cable 1 internal contacte arot




4 Numerical and asymptotic solution of
Duffing equation in the frequency domain

4.1 Introduction

One of the main issues of the use of the inter-modulation lobasdior
destructive testings their level relative to the main lobe located at the
load frequencyy/2m.

The choice of the data of the system in order to be able to observe the
inter-modulation lobes is not obvious numerically. The use of the doub
scale approximation is a valuable tool in order to design a system.
However, in the design process, it should be used cautiously because
generated data fall easily out of its domain of validity.

—
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4.2 Peaks of the exact Fourier transform of
the approximate solutionug + euq

As

A , ,
F(cos(2miat)X(o,4]) = 0} (Tae” ™A sinc(mvA)+7_se” ™ sinc(rrA))

with sinus cardinal (or sampling function)

e

he



angular frequency- level of the peak (4.1)

Lt ey 2 (4.2)

. tm;gc (_¢ N 63.(28?2;;52)) 4.3)

3.(1+ef) — etm;“ g—z (4.4)
(—2+a—2.ep) etm;’” a (_3.((1_2%{40){)2) (4.5)
2+a+2.ep)— etm;"” (1(3'6(1;?32) (4.6)
3o M ¢ (4.7)

2 (4.(1-9.02))

18

Proposition 4.1. From this table, it is clear that the level of the
intermodulation lobes depends linearly grthe slope itself
depends on the valug,,.. of the final time, on the level of

¢ = % related to the applied load , and on the level of th¢
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abs value of lobes ( asympt. exact ) of Four. of num. non lin displacement*hamming w ith

, eps=0.01, alfa=7.774134, phi=1.9, F=112.9306, dt=0.003, tmax=786.432, y0=0 ,v0=0
and exact lobes




4.3 Data of the bridge

The following data are those used in the experiments reportéd].in [

General data The total lenth of the stressed cable, young modulus anc
the area of the cross section:

Lot = 165m, E = 2% 10" N/m?, A = 4 % 10 3m?

linear mass ip = 43.8kg/m; the total mass i8615.5kg; it is taken
as the same for the damaged cable.

For the safe (undamaged) cable:.Themeasuredtension in the safe
cable:

Ty = 2.794 % 10° N,

from the usual stress-strain relation for bars, the relative elongatio
or strain between the unstressed ans prestressed configurations:
Sstot = T()/(E * A) = 0.0035;

=
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The 1 d.o.f. model provides a good approximation of the fundamental
frequency .

[The damaged cable] Thaeasuredtension is

Todam = 1.919 % 10°N;



The coefficients of formula [12) involved in Duffing equation:

€safe = —972.66 €4qm = —635.58.

We notice a substantial increase of due to decrease of rigi

[dity

of one cable; this increase causes an increase of the
| intermodulation lobes as noted in subseciion 4.2

24

For a much larger load” = 0.0378982, the intermodulations are quite

visible. However, it is acknowledge that it corresponds to an experimental

load of
ferp = 77711-115015(-4)*2 = 7676009 N

To found a shaker wchich can produce such a large load is quite




Finally, we show numerical evidence that if we apply the laad

frequency close to the eigenfrequency of the structbeeexperimental
load 0f489.NV is high enough in order to show intermodulations; the
asymptotic expansions provided in this article are not valid with this tyy
of frequency ; it will be considered in a forthcoming paper.
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Value of Fourier transform of non linear displacement with

eps=-635, alfa=1.061, F=0.0006370, phi=0.005154, dt=0.01, tmax=2621, y0=0,v0= 0
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Figure 4: tm=2621, alpha=1.06, F=0.00006 eps=-635,
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