Université de Nice Sophia-Antipolis
Master MathMods - Finite Elements - 2008/2009
V. Dolean

Basic Concepts - Exercises (Chapter 0)

Exercise 1.

Find the "stiffness" matrix \mathbf{K} for piecewise linear basis functions. If the right hand side f is piecewise linear i.e.

$$
f(x)=\sum_{i=1}^{n} f_{i} \phi_{i}(x)
$$

determine the matrix \mathbf{M} called "mass" matrix such that : KU = MF .

Exercise 2.

Give the weak formulation for the two-point boundary value problem :

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f, x \in(0,1) \\
u(0)=u(1)=0
\end{array}\right.
$$

Exercise 3.

Explain what is wrong in both variational and classical setting for the problem :

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f, x \in(0,1) \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

that is explain in both contexts why this problem is not well-posed.

Exercise 4.

Show that piecewise quadratics have nodal basis consisting of values at nodes x_{i} together with the midpoints $\frac{1}{2}\left(x_{i}+x_{i+1}\right)$. Calculate the stiffness matrix for these elements.

Exercise 5.

Let $h=\max _{1 \leq i \leq n}\left(x_{i}-x_{i-1}\right)$. Then,

$$
\left\|u-u_{I}\right\| \leq C h\left\|u^{\prime \prime}\right\|, \forall u \in V
$$

where C is independent of h and u.
Hint : Use first the homogeneity argument, then show that :

$$
\int_{0}^{1} w(x)^{2} d x \leq \tilde{c} \int_{0}^{1} w^{\prime}(x)^{2} d x
$$

by utilizing the fact that $w(0)=0$. How small can you make \tilde{c} if you use both $w(0)=0$ and $w(1)=0$?

Exercise 6.

We denote $a(u, v)=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x$ and $V=\left\{v \in L^{2}(0,1) ; a(v, v)<\infty, v(0)=0\right\}$. Prove the following coercivity results :

$$
\|v\|^{2}+\left\|v^{\prime}\right\|^{2} \leq C a(v, v), \forall v \in V
$$

Give a value for C.

Exercise 7.

Consider the difference method represented by :

$$
-\frac{2}{h_{i}+h_{i+1}}\left(\frac{U_{i+1}-U_{i}}{h_{i+1}}-\frac{U_{i}-U_{i-1}}{h_{i}}\right)=f\left(x_{i}\right) .
$$

Prove that $\tilde{u}_{S}=\sum_{i} U_{i} \phi_{i}$ satisfies the following :

$$
a\left(\tilde{u}_{S}, v\right)=Q(f v), \forall v \in S, a(u, v)=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x
$$

where S consists of piecewise linears and Q denotes the quadrature approximation based on the trapezoidal rule :

$$
Q(w)=\sum_{i=0}^{n} \frac{h_{i}+h_{i+1}}{2} w\left(x_{i}\right) .
$$

We further define $h_{0}=h_{n+1}=0$ for simplicity of notation.

Exercise 8.

Let Q be give by the previous exercise. Prove that:

$$
\left|Q(w)-\int_{0}^{1} w(x) d x\right| \leq C h^{2} \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}}\left|w^{\prime \prime}(x)\right| d x
$$

Hint : Observe that the trapezoidal rule is exact for piecewise linears and then use exercise 5 .

Exercise 9.

Let u_{S} the solution of $a\left(u_{S}, v\right)=(f, v), \forall v \in S$, where S consists of piecewise linears and let \tilde{u}_{S} be as in exercise 7. Prove that :

$$
\left|a\left(u_{S}-\tilde{u}_{S}, v\right)\right| \leq C h^{2}\left(\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|\right)\left(\|v\|+\left\|v^{\prime}\right\|\right)
$$

Hint : Apply exercise 8 and Schwarz' inequality.

Exercise 10.

Let u_{S} and \tilde{u}_{S} be like in the exercise 9. Prove that:

$$
\left\|u_{S}-\tilde{u}_{S}\right\|_{E} \leq C h^{2}\left(\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|\right)
$$

Hint : Apply exercise 9 , pick $v=u_{S}-\tilde{u}_{S}$ and apply exercise 6 .

