Université de Nice Sophia-Antipolis
Master MathMods - Finite Elements - 2008/2009
V. Dolean

Exercises - Chapter 0 (correction)

Exercise 1.

Find the "stiffness" matrix \mathbf{K} for linear basis functions. If the right hand side f is piecewise linear i.e.

$$
f(x)=\sum_{j=1}^{n} f_{j} \phi_{j}(x)
$$

determine the matrix \mathbf{M} called "mass" matrix such that : $\mathbf{K U}=\mathbf{M F}$.
Answer. The linear basis functions are given by :

$$
\phi_{i}(x)=\left\{\begin{array}{l}
\frac{x-x_{i-1}}{h_{i}}, x \in\left[x_{i-1}, x_{i}\right] \\
\frac{x_{i+1}-x}{h_{i+1}}, x \in\left[x_{i}, x_{i+1}\right] \\
0, x \notin\left[x_{i-1}, x_{i+1}\right]
\end{array}\right.
$$

According to the expression of the "stiffness" matrix we can write :

$$
\begin{aligned}
K_{i i} & =\int_{0}^{1}\left(\phi_{i}^{\prime}\right)^{2}(x) d x=\int_{x_{i-1}}^{x_{i}}\left(\phi_{i}^{\prime}\right)^{2}(x) d x+\int_{x_{i}}^{x_{i}+1}\left(\phi_{i}^{\prime}\right)^{2}(x) d x=\frac{1}{h_{i}}+\frac{1}{h_{i+1}} \\
K_{i, i+1} & =K_{i+1, i}=\int_{0}^{1} \phi_{i}^{\prime}(x) \phi_{i+1}^{\prime}(x) d x=\int_{x_{i}}^{x_{i}+1} \phi_{i}^{\prime}(x) \phi_{i+1}^{\prime}(x) d x=-\frac{1}{h_{i+1}}
\end{aligned}
$$

all the other elements being null since in all the other cases the basis functions ϕ_{i} and ϕ_{j} cannot be simultaneously non-zero. The right hand side can be written as :

$$
b_{i}=\int_{0}^{1} f(x) \phi_{i}(x) d x=\sum_{j=1}^{n} f_{j} \int_{0}^{1} \phi_{i}(x) \phi_{j}(x) d x=\sum_{j=1}^{n} M_{i j} f_{j}, M_{i j}=\int_{0}^{1} \phi_{i}(x) \phi_{j}(x) d x
$$

Thus, the "mass" matrix is formed by the elements $M_{i j}$ which can be computed as follows (by performing a variable change $x=x_{i-1}+t h$ in the integral on $\left[x_{i-1}, x_{i}\right]$ and $x=x_{i}+t h$ in the integral on $\left.\left[x_{i}, x_{i+1}\right]\right)$:

$$
\begin{aligned}
M_{i i} & =\int_{0}^{1} \phi_{i}^{2}(x) d x=\int_{x_{i-1}}^{x_{i}} \phi_{i}^{2}(x) d x+\int_{x_{i}}^{x_{i}+1} \phi_{i}^{2}(x) d x \\
& =h_{i} \int_{0}^{1} t^{2} d t+h_{i+1} \int_{0}^{1}(1-t)^{2} d t=\frac{h_{i}+h_{i+1}}{3} \\
M_{i, i+1} & =M_{i+1, i}=\int_{0}^{1} \phi_{i}(x) \phi_{i+1}(x) d x=\int_{x_{i}}^{x_{i}+1} \phi_{i}(x) \phi_{i+1}(x) d x=h_{i+1} \int_{0}^{1}(1-t) t d t=\frac{h_{i+1}}{6} .
\end{aligned}
$$

all the other elements being null since in all the other cases the basis functions ϕ_{i} and ϕ_{j} cannot be simultaneously non-zero.

Exercise 2.

Give the weak formulation for the two-point boundary value problem :

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f, x \in(0,1) \\
u(0)=u(1)=0
\end{array}\right.
$$

Answer. Mutiplying the equation inside the domain by a test function v and by integrating by parts we get :

$$
\int_{0}^{1} u v+u^{\prime} v^{\prime}=\int_{0}^{1} f v, a(u, v):=\int_{0}^{1} u v+u^{\prime} v^{\prime}
$$

The weak formulation can be written as :

$$
\text { find } u \in V=\left\{v \in L^{2}(0,1): v(0)=v(1)=0\right\} \text {, such that } a(u, v)=(f, v), \forall v \in V \text {. }
$$

Exercise 3.

Explain what is wrong in both variational and classical setting for the problem :

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f, x \in(0,1), \\
u^{\prime}(0)=u^{\prime}(1)=0
\end{array}\right.
$$

that is explain in both contexts why this problem is not well-posed.
Answer. For the classical setting we can see that is u is solution of the problem $u+C$ (where C is a constant) is also solution. Therefore the problem is not well-posed. The weak formulation can be written as :

$$
\text { find } u \in V=L^{2}(0,1) \text {, such that } \int_{0}^{1} u^{\prime} v^{\prime}=(f, v), \forall v \in V \text {. }
$$

If we put $v=C$ (where C is a constant) we get that $\int_{0}^{1} f=0$, that means if f doesn't respect this condition the problem has no solution (this is called compatibility condition). If the condition is fulfilled, the solution is defined only up to a constant.

Exercise 4.

Show that piecewise quadratics have nodal basis consisting of values at nodes x_{i} together with the midpoints $\frac{1}{2}\left(x_{i}+x_{i+1}\right)$. Calculate the stiffness matrix for these elements.

Answer. We denote by $\phi_{2 i}$ the basis functions associated to x_{i} and by $\phi_{2 i+1}$ those associated to the midpoint $\frac{1}{2}\left(x_{i}+x_{i+1}\right)$. They are given by :
$\phi_{2 i}(x)=\left\{\begin{array}{l}\frac{2 x-x_{i-1}-x_{i}}{h_{i}} \cdot \frac{x-x_{i-1}}{h_{i}} x \in\left[x_{i-1}, x_{i}\right], \\ \frac{2 x-x_{i}-x_{i+1}}{h_{i+1}} \cdot \frac{x-x_{i+1}}{h_{i+1}}, x \in\left[x_{i}, x_{i+1}\right], \\ 0, x \notin\left[x_{i-1}, x_{i+1}\right] .\end{array}, \phi_{2 i+1}(x)=\left\{\begin{array}{l}4 \frac{x-x_{i}}{h_{i+1}} \cdot \frac{x_{i+1}-x}{h_{i+1}}, x \in\left[x_{i}, x_{i+1}\right], \\ 0, x \notin\left[x_{i}, x_{i+1}\right] .\end{array}\right.\right.$
The stiffness matrix is again symmetric, with at most 5 non-zero elements on each line which can be computed as follows (by performing a variable change $x=x_{i-1}+$ th in the integral on $\left[x_{i-1}, x_{i}\right]$ and $x=x_{i}+t h$ in the integral on $\left.\left[x_{i}, x_{i+1}\right]\right):$

$$
\begin{aligned}
K_{2 i, 2 i} & =\int_{0}^{1}\left(\phi_{2 i}^{\prime}\right)^{2}(x) d x=\int_{x_{i-1}}^{x_{i}}\left(\phi_{2 i}^{\prime}\right)^{2}(x) d x+\int_{x_{i}}^{x_{i}+1}\left(\phi_{2 i}^{\prime}\right)^{2}(x) d x, \\
& =\frac{1}{h_{i}} \int_{0}^{1}(4 t-1)^{2} d t+\frac{1}{h_{i+1}} \int_{0}^{1}(4 t-3)^{2} d t=\frac{7}{3}\left(\frac{1}{h_{i}}+\frac{1}{h_{i+1}}\right), \\
K_{2 i, 2(i+1)} & =K_{2(i+1), 2 i}=\int_{x_{i}}^{x_{i}+1} \phi_{2 i}^{\prime}(x) \phi_{2(i+1)}^{\prime}(x) d x=\frac{1}{h_{i+1}} \int_{0}^{1}(4 t-3)(4 t-1) d t=\frac{1}{3 h_{i+1}}, \\
K_{2 i+1,2 i+1} & =\int_{x_{i}}^{x_{i}+1}\left(\phi_{2 i+1}^{\prime}\right)^{2}(x) d x=\frac{1}{h_{i+1}} \int_{0}^{1} 16(2 t-1)^{2} d t=\frac{16}{3 h_{i+1}}, \\
K_{2 i, 2 i+1} & =K_{2 i+1,2 i}=\int_{x_{i}}^{x_{i}+1} \phi_{2 i}^{\prime}(x) \phi_{2 i+1}^{\prime}(x) d x=\frac{1}{h_{i+1}} \int_{0}^{1}(4 t-1)(4-8 t) d t=-\frac{8}{3 h_{i+1}} .
\end{aligned}
$$

Exercise 5.

Let $h=\max _{1 \leq i \leq n}\left(x_{i}-x_{i-1}\right)$. Then,

$$
\left\|u-u_{I}\right\| \leq C h\left\|u^{\prime \prime}\right\|, \forall u \in V
$$

where C is independent of h and u.
Hint : Use first the homogeneity argument, then show that:

$$
\begin{equation*}
\int_{0}^{1} w(x)^{2} d x \leq \tilde{c} \int_{0}^{1} w^{\prime}(x)^{2} d x \tag{1}
\end{equation*}
$$

by utilizing the fact that $w(0)=0$. How small can you make \tilde{c} if you use both $w(0)=0$ and $w(1)=0$?

Answer. In the following we will use the homogeneity argument as in the lecture. According to the definition of the two norms, it is sufficient to prove the estimate piecewise, i.e :

$$
\int_{x_{j-1}}^{x_{j}}\left(u-u_{I}\right)^{\prime}(x)^{2} d x \leq c\left(x_{j}-x_{j-1}\right)^{2} \int_{x_{j-1}}^{x_{j}} u^{\prime \prime}(x) d x
$$

with $C=\sqrt{c}$. This inequality can be re-written in terms of error by denoting : $e=u-u_{I}$ (note that u_{I} is piecewise linear and therefore its second derivative cancels) and then by performing a variable change $x=x_{j-1}+t\left(x_{j}-x_{j-1}\right)$ (an affine mapping from the interval $\left[x_{j-1}, x_{j}\right]$ to $[0,1])$ as follows :

$$
\int_{0}^{1} \tilde{e}(t)^{2} d t \leq c \int_{0}^{1} \tilde{e}^{\prime \prime}(t) d t, \tilde{e}(t)=e\left(x_{j-1}+t\left(x_{j}-x_{j-1}\right)\right)
$$

Now, using some results of the lecture, it is enough to prove (1) for $w=\tilde{e}$. Note that $w(0)=w(1)=0$ since the interpolation error will be zero at all nodes. Therefore :

$$
w(x)=\int_{0}^{x} w^{\prime}(t) d t
$$

by using Schwarz' inequality we get :

$$
\begin{aligned}
\int_{0}^{1} w(x)^{2} d x & =\int_{0}^{1}\left(\int_{0}^{x} 1 \cdot w^{\prime}(t) d t\right)^{2} d x \leq \int_{0}^{1}\left(\int_{0}^{x} d t\right) \cdot\left(\int_{0}^{x} w^{\prime}(t)^{2} d t\right) d x \\
& \leq \int_{0}^{1} x \cdot\left(\int_{0}^{x} w^{\prime}(t)^{2} d t\right) d x \leq \int_{0}^{1} x \cdot\left(\int_{0}^{1} w^{\prime}(t)^{2} d t\right) d x \\
& =\left(\int_{0}^{1} w^{\prime}(t)^{2} d t\right) \cdot \int_{0}^{1} x d x=\frac{1}{2} \int_{0}^{1} w^{\prime}(t)^{2} d t
\end{aligned}
$$

the constant is thus $\tilde{c}=\frac{1}{2}$.
If $w(0)=w(1)=0$, we can consider this function as periodic with period $T=1$ and write its Fourier series as follows :

$$
w(x)=\sum_{k} a_{k} \sin (k \pi x)=\sum_{k \neq 0} a_{k} \sin (k \pi x) \Rightarrow w^{\prime}(x)=\sum_{k \neq 0} k \pi a_{k} \cos (k \pi x)
$$

Using Parseval's equality we get :

$$
\int_{0}^{1} w(x)^{2} d x=\frac{1}{2} \sum_{k \neq 0} a_{k}^{2}, \int_{0}^{1} w^{\prime}(x)^{2} d x=\frac{1}{2} \sum_{k \neq 0}(k \pi)^{2} a_{k}^{2}
$$

which proves the optimal inequality (the best $\tilde{c}=\frac{1}{\pi^{2}}$) :

$$
\int_{0}^{1} w(x)^{2} d x \leq \frac{1}{\pi^{2}} \int_{0}^{1} w^{\prime}(x)^{2} d x
$$

Exercise 6.

We denote $a(u, v)=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x$ and $V=\left\{v \in L^{2}(0,1) ; a(v, v)<\infty, v(0)=0\right\}$. Prove the following coercivity results :

$$
\|v\|^{2}+\left\|v^{\prime}\right\|^{2} \leq C a(v, v), \forall v \in V
$$

Give a value for C.
Answer. Using the previous exercise it is easy to see that:

$$
\|v\| \leq c\left\|v^{\prime}\right\|, c=\frac{1}{2} \Rightarrow\|v\|^{2}+\left\|v^{\prime}\right\|^{2} \leq\left(c^{2}+1\right)\left\|v^{\prime}\right\|^{2}=\left(c^{2}+1\right) a(v, v) \Rightarrow C=\frac{5}{4}
$$

Furthermore, if the space V were given by $V=\left\{v \in L^{2}(0,1) ; a(v, v)<\infty, v(0)=v(1)=0\right\}$, then C attains its optimal value $C=\frac{1+\pi^{4}}{\pi^{4}}$.

Exercise 7.

Consider the difference method represented by :

$$
\begin{equation*}
-\frac{2}{h_{i}+h_{i+1}}\left(\frac{U_{i+1}-U_{i}}{h_{i+1}}-\frac{U_{i}-U_{i-1}}{h_{i}}\right)=f\left(x_{i}\right) . \tag{2}
\end{equation*}
$$

Prove that $\tilde{u}_{S}=\sum_{i} U_{i} \phi_{i}$ satisfies the following:

$$
a\left(\tilde{u}_{S}, v\right)=Q(f v), \forall v \in S, a(u, v)=\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x
$$

where S consists of piecewise linears and Q denotes the quadrature approximation based on the trapezoidal rule :

$$
Q(w)=\sum_{i=0}^{n} \frac{h_{i}+h_{i+1}}{2} w\left(x_{i}\right) .
$$

We further define $h_{0}=h_{n+1}=0$ for simplicity of notation.
Answer. The relation (2) can be re-written as :

$$
\mathbf{K} U=\mathbf{F}, \mathbf{F}=\left(\frac{h_{i}+h_{i+1}}{2} f\left(x_{i}\right)\right)_{1 \leq i \leq n-1}, U=\left(U_{i}\right)_{1 \leq i \leq n-1}
$$

If we write v as a linear combination of basis elements of $S: v=\sum_{i} V_{i} \phi_{i}$ with $V_{i}=v\left(x_{i}\right)$ and denote $V=\left(v\left(x_{i}\right)\right)_{1 \leq i \leq n-1}$ we see that by linearity of a w.r.t. al components we have :

$$
\begin{aligned}
a\left(\tilde{u}_{S}, v\right) & =a\left(\sum_{i} U_{i} \phi_{i}, \sum_{j} V_{j} \phi_{j}\right)=\sum_{i} \sum_{j} a\left(\phi_{j}, \phi_{i}\right) U_{i} V_{j}=(\mathbf{K} U, V) \\
& =(\mathbf{F} U, V)=\sum_{i=0}^{n} \frac{h_{i}+h_{i+1}}{2} f\left(x_{i}\right) v\left(x_{i}\right)=Q(f v)
\end{aligned}
$$

The difference method is thus equivalent to a piecewise polynomial approximation where the right hand side is approximated with a trapezoidal rule.

Exercise 8.

Let Q be give by the previous exercise. Prove that :

$$
\begin{equation*}
\left|Q(w)-\int_{0}^{1} w(x) d x\right| \leq C h^{2} \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}}\left|w^{\prime \prime}(x)\right| d x \tag{3}
\end{equation*}
$$

Hint : Observe that the trapezoidal rule is exact for piecewise linears and then use exercise 5 .

Answer. Let $w_{I} \in S$ be the piecewise linear interpolant of w. We have that the trapezoidal rule is exact for w_{I} and since $w_{I}\left(x_{i}\right)=w\left(x_{i}\right)$ we have :

$$
\int_{0}^{1} w_{I}(x) d x=Q\left(w_{I}\right)=Q(w)
$$

If we denote by $e=w-w_{I}$ the equation (3) becomes :

$$
\left|\int_{0}^{1} e(x) d x\right| \leq C h^{2} \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}}\left|e^{\prime \prime}(x)\right| d x
$$

By using the homogeneity argument it is enough to prove that:

$$
\left|\int_{x_{i-1}}^{x_{i}} e(x) d x\right| \leq C\left(x_{i}-x_{i-1}\right)^{2} \int_{x_{i-1}}^{x_{i}}\left|e^{\prime \prime}(x)\right| d x \Leftrightarrow\left|\int_{0}^{1} \tilde{e}(t) d t\right| \leq C \int_{0}^{1}\left|\tilde{e}^{\prime \prime}(t)\right| d t
$$

where $\tilde{e}(t)=e\left(x_{i-1}+t\left(x_{i}-x_{i-1}\right)\right)$. To simplify the notations we denote $w=\tilde{e}$ and we see that $w(0)=w(1)=0$ and by Rolle's theorem there exist ξ such that $w(\xi)=0$. We further obtain that:

$$
\begin{aligned}
\left|\int_{0}^{1} w(x) d x\right| & =\left|\int_{0}^{1} \int_{0}^{x} w^{\prime}(t) d t d x\right|=\left|\int_{0}^{1} \int_{0}^{x} \int_{\xi}^{t} w^{\prime \prime}(\tau) d \tau d t d x\right| \leq \int_{0}^{1} \int_{0}^{x}\left|\int_{\xi}^{t} w^{\prime \prime}(\tau) d \tau\right| d t d x \\
& \leq \int_{0}^{1} \int_{0}^{1}\left|\int_{\xi}^{t} w^{\prime \prime}(\tau) d \tau\right| d t d x=\int_{0}^{1}\left|\int_{\xi}^{t} w^{\prime \prime}(\tau) d \tau\right| d t \\
& \leq \int_{0}^{\xi} \int_{t}^{\xi}\left|w^{\prime \prime}(\tau)\right| d \tau d t+\int_{\xi}^{1} \int_{\xi}^{t}\left|w^{\prime \prime}(\tau)\right| d \tau d t \leq \int_{0}^{\xi} \int_{0}^{\xi}\left|w^{\prime \prime}(\tau)\right| d \tau d t+\int_{\xi}^{1} \int_{\xi}^{1}\left|w^{\prime \prime}(\tau)\right| d \tau d t \\
& \leq \xi \int_{0}^{\xi}\left|w^{\prime \prime}(\tau)\right| d \tau+(1-\xi) \int_{\xi}^{1}\left|w^{\prime \prime}(\tau)\right| d \tau \leq \max \{\xi, 1-\xi\} \int_{0}^{1}\left|w^{\prime \prime}(x)\right| d x
\end{aligned}
$$

The constant is then given by : $C=\max \{\xi, 1-\xi\}$.

Exercise 9.

Let u_{S} the solution of $a\left(u_{S}, v\right)=(f, v), \forall v \in S$, where S consists of piecewise linears and let \tilde{u}_{S} be as in exercise 7. Prove that:

$$
\begin{equation*}
\left|a\left(u_{S}-\tilde{u}_{S}, v\right)\right| \leq C h^{2}\left(\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|\right)\left(\|v\|+\left\|v^{\prime}\right\|\right) \tag{4}
\end{equation*}
$$

Hint : Apply exercise 8 and Schwarz' inequality.
Answer. By applying exercises 7 and 8 we get :

$$
\begin{aligned}
\left|a\left(\tilde{u}_{S}-u_{S}, v\right)\right| & =|Q(f v)-(f, v)|=\left|Q(f v)-\int_{0}^{1}(f v)(x)\right| \leq C h^{2} \int_{0}^{1}\left|(f v)^{\prime \prime}(x)\right| d x \\
& =C h^{2} \int_{0}^{1}\left|f^{\prime \prime}(x) v(x)+2 f^{\prime}(x) v^{\prime}(x)\right| d x
\end{aligned}
$$

By applying Schwarz's inequality we further obtain :

$$
\begin{aligned}
\int_{0}^{1}\left|f^{\prime \prime}(x) v(x)+2 f^{\prime}(x) v^{\prime}(x)\right| d x & \leq \int_{0}^{1}\left|f^{\prime \prime}(x) \cdot v(x)\right| d x+\int_{0}^{1}\left|f^{\prime}(x) \cdot v^{\prime}(x)\right| d x+\int_{0}^{1}\left|1 \cdot f^{\prime}(x) v^{\prime}(x)\right| d x \\
& \leq\left\|f^{\prime \prime}\right\|\|v\|+\left\|f^{\prime}\right\|\left\|v^{\prime}\right\|+\left\|f^{\prime} v^{\prime}\right\| \leq\left\|f^{\prime \prime}\right\|\|v\|+\left\|f^{\prime}\right\|\left\|v^{\prime}\right\|+C\left\|\left(f^{\prime} v^{\prime}\right)^{\prime}\right\| \\
& =\max \{1, C\}\left(\left\|f^{\prime \prime}\right\|\|v\|+\left\|f^{\prime}\right\|\left\|v^{\prime}\right\|+\left\|f^{\prime \prime} v^{\prime}\right\|\right) \\
& \leq \max \{1, C\}\left(\left\|f^{\prime \prime}\right\|\|v\|+\left\|f^{\prime}\right\|\left\|v^{\prime}\right\|+\left\|f^{\prime \prime}\right\|\left\|v^{\prime}\right\|+\left\|f^{\prime}\right\|\|v\|\right) \\
& \leq C\left(\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|\right)\left(\|v\|+\left\|v^{\prime}\right\|\right)
\end{aligned}
$$

Exercise 10.

Let u_{S} and \tilde{u}_{S} be like in the exercise 9. Prove that:

$$
\left\|u_{S}-\tilde{u}_{S}\right\|_{E} \leq C h^{2}\left(\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|\right)
$$

Hint : Apply exercise 9 , pick $v=u_{S}-\tilde{u}_{S}$ and apply exercise 6 .
Answer. We plug $v=u_{S}-\tilde{u}_{S}$ into (4) and we get:

$$
\left\|u_{S}-\tilde{u}_{S}\right\|_{E}^{2}=a\left(u_{S}-\tilde{u}_{S}, u_{S}-\tilde{u}_{S}\right) \leq C h^{2}\left(\left\|f^{\prime}\right\|+\left\|f^{\prime \prime}\right\|\right)\left(\left\|u_{S}-\tilde{u}_{S}\right\|+\left\|u_{S}^{\prime}-\tilde{u}_{S}^{\prime}\right\|\right)
$$

The coercivity of a (the application of the exercise 6) gives :

$$
\left\|u_{S}-\tilde{u}_{S}\right\| \leq C\left\|u_{S}-\tilde{u}_{S}\right\|_{E} \text { and }\left\|u_{S}^{\prime}-\tilde{u}_{S}^{\prime}\right\| \leq C\left\|u_{S}-\tilde{u}_{S}\right\|_{E}
$$

and the conclusion follows directly.

