Some notes on SCILAB

STEP 1

Get starting

To run Scilab on Unix/Linux O.S. type in the window the word:
scilab
You get a Scilab window on your computer screen. This Scilab window has a menu (File, Control, Graphic Window, Help).

1.1 Manipulating variables, constants

As programming language Scilab owns variables, constants, vectors.

1.1.1 Scalars

Few examples are given
$---->x=2 .+\operatorname{sqrt}(5)$
$---->x=3 . e-2$
Usual arithmetic operations are valable with usual priority $+,-, *, /, * *$.

1.1.2 Constants

Scilab possesses predefined variables or protected variables known as constants. They cannot be changed. There are given in table 1.

Constant	meaning
\%pi	$\pi=3.14 \ldots$
$\% \mathrm{e}$	$e=2.73 \ldots$
$\% \mathrm{i}$	complexe number i s.t. $i^{2}=-1$
\%eps	machine epsilon
\%inf	$+\infty$
\%nan	"Not A Number"

Table 1: Scilab constants.

1.1.3 String variables

Examples of chains of caracters known as string variables are given.
$---->s=^{\prime}$ subject ${ }^{\prime}, v=^{\prime}$ verb $^{\prime}, c==^{\prime \prime}$ complement ${ }^{\prime \prime}$
Some operations on string variables are shown in table 2.

operations	meaning
+	concatenation
strcat	concatenation
strindex	caracter research
strsubst	caracter substitution
length	number of caracters in a chain

Table 2: Some operations on string variables.

1.1.4 Logical variables

Logical variable or boolean variable corresponds to a logical expression. A logical variable can only take two values: $\% t$ for true and $\% f$ for false. Basic operations on logical variables are given in table 3 .

operations	meaning
\sim	negation
\mid	or
$\&$	and

Table 3: Operations on logical variables.

Comparison operations between boolean variables are displayed in table 4.

operations	meaning
$==$	equals to
$<>$ or $\sim=$	is not equal to
$<$	lower than
$>$	greater than
\leq	lower or equal to
\geq	greater or equal to

Table 4: Logical variables comparison operations.

1.2 Manipulating matrices

A matrix is a set of variable types defined in previous sec. 1.1. However, everything in Scilab is a matrix.

Here are are some examples
$---->A=\left[\begin{array}{llll}1 & 2 & 3 ; 4 & 5\end{array}\right] ; B=[7,8,9] ; C=[] ;$
$---->D=[\cos (1) \% e ; \sin (\% p i / 2) \% i]$
A matrix can be defined explicitly by enumerating its elements:

- rows are separated by ";"
- columns are separated by ","

Operations on matrices format are shown in table 5 .

operations	meaning
$\mathrm{A}(\mathrm{i}, \mathrm{j})$	element of A in entry i, j
$\mathrm{A}(\mathrm{i},:)$	row i of A
$\mathrm{A}(:, \mathrm{j})$	column j of A
$A\left(i_{1}: i_{2}, j_{1}: j_{2}\right)$	matrix extracted from A from rows i_{1} to row i_{2}
$\operatorname{size}(\mathrm{~A}, 1)$	and from colomn j_{1} to column j_{2}
$\operatorname{size}(\mathrm{~A}, 2)$	rows number of matrix A
$\operatorname{size}(\mathrm{A})$	columns number of matrix A
$\operatorname{length}(\mathrm{A})$	rows number of matrix A, columns number of matrix A
total number of elements of matrix A	

Table 5: Matrix format operations.

Usual Operations on matrices,,$+- *$ are valable. In addition Scilab allows another operations known as element by element operations. They are displayed in table 6 .

operations	meaning
A.*B	$\left(a_{i j} * b_{i j}\right)$
A./B	$\left(a_{i j} / b_{i j}\right)$
A. ${ }^{\wedge} \mathrm{B}$	$\left(a_{i j}^{b_{j j}}\right)$
$f(\mathrm{~A})$	$f\left(a_{i j}\right), f$ being a defined or predefined function

Table 6: Element by element matrix operations.

As example type following instructions:
$---->A=\left[\begin{array}{lllll}1 & 2 & 3 ; & 4 & 5\end{array}\right] ; B=\exp (A)$;
There are also predefined matrices given in table 7 and left to the reader to complete meanings her(him)self (n, m are integers, A a matrix, u a scalar).

Sparse matrices

Sparse matrices can be easily performed on Scilab. The keyword is Sparse.
As example one can execute following instructions
$---->A=\left[\begin{array}{lllllllllllllllllll}2 & -1 & -1 & 0 & 5 ;-1 & 2 & -1 & 0 & 0 ; 0 & -1 & 2 & -1 & 0 ; 0 & 0 & -1 & 2 & - \\ \hline\end{array}\right.$ $1 ; 003-12]$;
$---->\operatorname{Sparse} A=\operatorname{sparse}(A)$
$---->\operatorname{size}($ SparseA $)$
$---->u=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\right]^{\prime}$
$--->\operatorname{Sparse} A * u$

operations	meaning
$\operatorname{zeros}(\mathrm{n}, \mathrm{m})$	
$\operatorname{ones}(\mathrm{n}, \mathrm{m})$	
$\operatorname{eyes}(\mathrm{n}, \mathrm{m})$	
$\operatorname{diag}(\mathrm{A})$	
$\operatorname{diag}(\mathrm{u})$	
$\operatorname{diag}(\mathrm{u}, \mathrm{i})$	
$\operatorname{tril}(\mathrm{u})$	
$\operatorname{triu}(\mathrm{u})$	

Table 7: Some predefined matrix operations.

In pratical applications, one is faced to large sparse matrix which cannot be stored entirely in Scilab memory. However, knowning the location of nonvanishing elements of the sparse matrix under consideration, one can reperesent this matrix. The procedure is the following:

- One constructs a vector u containing nonvanishing elements of the matrix;
- A vector $i i$ of integer containing the rows entries of nonvanishing elements of the matrix is considered;
- One constructs a vector $j j$ of integer containing the columns entries of nonvanishing elements of the matrix is considered, according to the vector $i i$.

Next an example is considered.

$$
\left.\begin{array}{l}
---->i i=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 1 & :
\end{array}\right] ; \\
---->j j=\left[\begin{array}{lllllll}
2 & 1 & 4 & 3 & 1 & : & 4
\end{array}\right] ; \\
---->u=\left[\begin{array}{llllll}
-1 & -1 & -1 & -1 & 2 & 2
\end{array}\right]
\end{array}\right] ;
$$

Vectors

A vector is a particular matrix having n rows and 1 column.
For example
$---->v=\left[\begin{array}{llllll}1 & 2 & 7 & 4 & 1 & 20\end{array}\right]$
$---->u=5: 2: 12$
$---->w=0: 10$
Following useful commands on vectors are shown in table 8.
Some examples are now given.

- - -- > linspace $(0.2,2,5)$
$--->$ logspace $(0.1,4,10)$
$---->\operatorname{logspace}(1, \% p i, 10)$

operations	meaning
linspace (a, b, n)	vector of size n whose components are equidistant logspace (a, b, n)
vector of size n whose logarithm of components are equidistant	

Table 8: Equidistant vector operations.
\square Graphics plotting

2.1 Curves

Curves are plotted in Scilab by using the command plot.
Here are examples.
$---->x=\operatorname{linspace}(1,15), y=\cos (x) ; p l o t(x, y)$
$--->x=\operatorname{linspace}(1,10)^{\prime}$
$---->\operatorname{plot}\left(x, \cos (x),{ }^{\prime} b-^{\prime}, x, \sin (x),{ }^{\prime} r o-^{\prime}, x, \cos (x) . * \sin (x), ' g+-^{\prime}\right)$

2.2 Surfaces, level sets

Following commands are left to readers to be fimiliar with:
plot3d, contour, contour2d

2.3 Save Graphics

Table 9 gives commands regarding how to save and load a graphic.

commands	meaning
xsave xload	save a graphic in a window load a file containing a graphic in a window

Table 9: Save graphics and load files containing graphics commands.

2.4 Graphics managing

Useful commands enabling one to manage graphics context are given in table 10 and left to the reader to check their utilities.

commands	meaning
clf	
xbasc	
xset	
xget	

Table 10: Graphics managing commands.

STEP 3

Programming in Scilab

3.1 Conditional instructions

3.1.1 The 'If' instruction

The syntax is as follows

If condition then
instructions
end
3.1.2 The 'Select' instruction

The syntax is as follows
select expression
case expression1 then
instructions1
case expressionn then
instructionsn
end

If condition then instruction1
else instruction2
end
select expression case expression1 then instructions1
case expressionn then instructionsn
else
instructions
end

3.2 Iterative instructions

3.2.1 The 'for' loop

The syntax of the for loop is as follows

```
for var=begin : step : end
        instructions
    end
```


3.2.2 The 'while' loop

The syntax of the while loop is as follows while condition do instructions
end

3.3 Functions, scripts

A function can be defined either in the calling program (in-line function), or in other file distinct from the one of the calling program.

3.3.1 Function in-line

The keyword is deff.
Here is an example

$$
\begin{aligned}
& ---->\operatorname{deff}\left(\prime^{\prime}[p l u s, \text { minus }]=p m(a, b)^{\prime},\left[{ }^{\prime} p l u s=a+b^{\prime}, ' m i n u s=a-b^{\prime}\right]\right) \\
& ---->\operatorname{pm}(2,4)
\end{aligned}
$$

3.3.2 Function defined in a file

The syntax of a function written in a file is as follows

$$
\begin{aligned}
& \text { function }[\text { output arguments] }=\text { functionname(input arguments) } \\
& \text { instructions }
\end{aligned}
$$

endfunction
The above in-line function example is rewritten as a defined function in a file

$$
\begin{aligned}
& \text { function [plus, minus] }=\operatorname{pmf}(a, b) \\
& \quad \text { plus }=a+b \\
& \text { minus }=a-b \\
& \text { endfunction }
\end{aligned}
$$

3.3.3 Scripts

To save typing the same Scilab instructions, on can write one of all these instructions in a file, known as a script.

STEP 4

Applications

One would like to solve with Jacobi and Gauss-Seidel iterative methods the linear system $A x=b$ where $b \in \mathbb{R}^{n}$ and A is the following n-order square matrix:

$$
A=\left(\begin{array}{ccccccccc}
2 & -1 & & & & & & & \\
-1 & 2 & -1 & & & & 0 & & \\
& -1 & 2 & -1 & & & 0 & & \\
& & -1 & 2 & -1 & & & & \\
& & & \ddots & \ddots & \ddots & & & \\
& & & & -1 & 2 & -1 & & \\
& & 0 & & & -1 & 2 & -1 & \\
& & & & & & -1 & 2 & -1 \\
& & & & & & & -1 & 2
\end{array}\right)
$$

a. The approximate solution sequence $\left(x^{k}\right)_{k \geq 0}$ given by the Jacobi method is recalled

$$
\left\{\begin{array}{l}
b_{i}-\sum_{\substack{j=1 \\
j \neq i}}^{n} a_{i j} x_{j}^{k} \tag{4.1}\\
x_{i i}^{k+1}=\frac{a_{i}}{}, \text { for } k \geq 0, \text { for } i=1, \ldots, n, \\
x^{0} \text { given. }
\end{array}\right.
$$

Write a program returning the iterative solution given by the Jacobi method.
b. The approximate solution sequence $\left(x^{k}\right)_{k \geq 0}$ generated by the Gauss-Seidel method is as follows

$$
\left\{\begin{array}{l}
b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}^{k+1}-\sum_{j=i+1}^{n} a_{i j} x_{j}^{k} \tag{4.2}\\
x_{i}^{k+1}=\frac{a_{i i}}{}, \text { for } k \geq 0, \text { for } i=1, \ldots, n, \\
x^{0} \text { given } .
\end{array}\right.
$$

Write a program returning the iterative solution produced by the Gauss-Seidel method (left to the reader).

