
Université de Nice Sophia-Antipolis
Master 1 MathMods Année 2008/2009

Some notes on SCILAB
STEP 1

Get starting

To run Scilab on Unix/Linux O.S. type in the window the word:
scilab
You get a Scilab window on your computer screen. This Scilab window has a menu

(File, Control, Graphic Window, Help).

1.1 Manipulating variables, constants

As programming language Scilab owns variables, constants, vectors.

1.1.1 Scalars

Few examples are given
−−−− > x = 2. + sqrt(5)
−−−− > x = 3.e− 2

Usual arithmetic operations are valable with usual priority +,−, ∗, /, ∗∗.

1.1.2 Constants

Scilab possesses predefined variables or protected variables known as constants. They
cannot be changed. There are given in table 1.

Constant meaning
%pi π = 3.14...
%e e = 2.73...
%i complexe number i s.t. i2 = −1
%eps machine epsilon
%inf +∞
%nan ”Not A Number”

Table 1: Scilab constants.

1.1.3 String variables

Examples of chains of caracters known as string variables are given.
−−−− > s =′ subject′, v =′ verb′, c =′′ complement′′

Some operations on string variables are shown in table 2.

1

Université de Nice Sophia-Antipolis
Master 1 MathMods Année 2008/2009

operations meaning
+ concatenation
strcat concatenation
strindex caracter research
strsubst caracter substitution
length number of caracters in a chain

Table 2: Some operations on string variables.

1.1.4 Logical variables

Logical variable or boolean variable corresponds to a logical expression. A logical variable
can only take two values: %t for true and %f for false. Basic operations on logical variables
are given in table 3.

operations meaning
˜ negation
| or
& and

Table 3: Operations on logical variables.

Comparison operations between boolean variables are displayed in table 4.

operations meaning
== equals to
<> or ˜= is not equal to
< lower than
> greater than
≤ lower or equal to
≥ greater or equal to

Table 4: Logical variables comparison operations.

1.2 Manipulating matrices

A matrix is a set of variable types defined in previous sec. 1.1. However, everything in
Scilab is a matrix.

Here are are some examples
−−−− > A = [1 2 3; 4 5 6];B = [7, 8, 9];C = [];
−−−− > D = [cos(1) %e ; sin(%pi/2) %i]
A matrix can be defined explicitly by enumerating its elements:

2

Université de Nice Sophia-Antipolis
Master 1 MathMods Année 2008/2009

• rows are separated by “;”

• columns are separated by “,”

Operations on matrices format are shown in table 5.

operations meaning
A(i,j) element of A in entry i,j
A(i,:) row i of A
A(:,j) column j of A
A(i1 : i2, j1 : j2) matrix extracted from A from rows i1 to row i2

and from colomn j1 to column j2

size(A, 1) rows number of matrix A
size(A, 2) columns number of matrix A
size(A) rows number of matrix A, columns number of matrix A
length(A) total number of elements of matrix A

Table 5: Matrix format operations.

Usual Operations on matrices +,−, ∗ are valable. In addition Scilab allows another
operations known as element by element operations. They are displayed in table 6.

operations meaning
A.*B (aij ∗ bij)
A./B (aij/bij)
A.ˆB (abij

ij)
f(A) f(aij), f being a defined or predefined function

Table 6: Element by element matrix operations.

As example type following instructions:
−−−− > A = [1 2 3; 4 5 6]; B = exp(A);
There are also predefined matrices given in table 7 and left to the reader to complete

meanings her(him)self (n,m are integers, A a matrix, u a scalar).

Sparse matrices
Sparse matrices can be easily performed on Scilab. The keyword is Sparse.
As example one can execute following instructions

−−−− > A = [2 − 1 − 1 0 5 ;−1 2 − 1 0 0 ; 0 − 1 2 − 1 0 ; 0 0 − 1 2 −
1 ; 0 0 3 − 1 2];

−−−− > SparseA = sparse(A)
−−−− > size(SparseA)
−−−− > u = [1 1 1 1 1]′

−−−− > SparseA ∗ u

3

Université de Nice Sophia-Antipolis
Master 1 MathMods Année 2008/2009

operations meaning
zeros(n,m)
ones(n,m)
eyes(n,m)
diag(A)
diag(u)
diag(u,i)
tril(u)
triu(u)

Table 7: Some predefined matrix operations.

In pratical applications, one is faced to large sparse matrix which cannot be stored entirely
in Scilab memory. However, knowning the location of nonvanishing elements of the sparse
matrix under consideration, one can reperesent this matrix. The procedure is the following:

• One constructs a vector u containing nonvanishing elements of the matrix;

• A vector ii of integer containing the rows entries of nonvanishing elements of the
matrix is considered;

• One constructs a vector jj of integer containing the columns entries of nonvanishing
elements of the matrix is considered, according to the vector ii.

Next an example is considered.
−−−− > ii = [1 2 3 4 1 : 4];
−−−− > jj = [2 1 4 3 1 : 4];
−−−− > u = [−1 − 1 − 1 − 1 2 2 2 2];
−−−− > pos = [ii; jj]′;
−−−− > spx = sparse(pos, u)
−−−− > full(spx)

Vectors
A vector is a particular matrix having n rows and 1 column.
For example
−−−− > v = [1 2 7 4 1 20]
−−−− > u = 5 : 2 : 12
−−−− > w = 0 : 10
Following useful commands on vectors are shown in table 8.

Some examples are now given.
−−−− > linspace(0.2 , 2 , 5)
−−−− > logspace(0.1 , 4 , 10)
−−−− > logspace(1 ,%pi , 10)

4

Université de Nice Sophia-Antipolis
Master 1 MathMods Année 2008/2009

operations meaning
linspace(a,b,n) vector of size n whose components are equidistant
logspace(a,b,n) vector of size n whose logarithm of components are equidistant

Table 8: Equidistant vector operations.

STEP 2
Graphics plotting

2.1 Curves

Curves are plotted in Scilab by using the command plot.
Here are examples.
−−−− > x = linspace(1 , 15) , y = cos(x) ; plot(x, y)
−−−− > x = linspace(1 , 10)′

−−−− > plot(x, cos(x), ′b ∗ −′, x, sin(x), ′ro−′, x, cos(x). ∗ sin(x), ′g +−′)

2.2 Surfaces, level sets

Following commands are left to readers to be fimiliar with:
plot3d, contour, contour2d

2.3 Save Graphics

Table 9 gives commands regarding how to save and load a graphic.

commands meaning
xsave save a graphic in a window
xload load a file containing a graphic in a window

Table 9: Save graphics and load files containing graphics commands.

2.4 Graphics managing

Useful commands enabling one to manage graphics context are given in table 10 and left
to the reader to check their utilities.

5

Université de Nice Sophia-Antipolis
Master 1 MathMods Année 2008/2009

commands meaning
clf
xbasc
xset
xget

Table 10: Graphics managing commands.

STEP 3
Programming in Scilab

3.1 Conditional instructions

3.1.1 The ’If ’ instruction

The syntax is as follows

If condition then

instructions

end

or

If condition then
instruction1

else
instruction2

end

3.1.2 The ’Select’ instruction

The syntax is as follows

select expression

case expression1 then
instructions1

case expressionn then
instructionsn

end

or

select expression
case expression1 then

instructions1
case expressionn then

instructionsn
else

instructions
end

3.2 Iterative instructions

3.2.1 The ’for’ loop

The syntax of the for loop is as follows

6

Université de Nice Sophia-Antipolis
Master 1 MathMods Année 2008/2009

for var=begin : step : end

instructions

end

3.2.2 The ’while’ loop

The syntax of the while loop is as follows
while condition do

instructions

end

3.3 Functions, scripts

A function can be defined either in the calling program (in-line function), or in other file
distinct from the one of the calling program.

3.3.1 Function in-line

The keyword is deff.
Here is an example
−−−− > deff(′[plus, minus] = pm(a, b)′, [′plus = a + b′, ′minus = a− b′])
−−−− > pm(2, 4)

3.3.2 Function defined in a file

The syntax of a function written in a file is as follows

function [output arguments] = functionname(input arguments)

instructions

endfunction

The above in-line function example is rewritten as a defined function in a file

function [plus, minus] = pmf(a, b)

plus = a+b
minus = a-b

endfunction

7

Université de Nice Sophia-Antipolis
Master 1 MathMods Année 2008/2009

3.3.3 Scripts

To save typing the same Scilab instructions, on can write one of all these instructions in
a file, known as a script.

STEP 4
Applications

One would like to solve with Jacobi and Gauss-Seidel iterative methods the linear system
Ax = b where b ∈ Rn and A is the following n-order square matrix:

A =

2 −1
−1 2 −1

−1 2 −1 0
−1 2 −1

.
−1 2 −1

0 −1 2 −1
−1 2 −1

−1 2

.

a. The approximate solution sequence (xk)k≥0 given by the Jacobi method is recalled xk+1
i =

bi −
n∑

j=1
j 6=i

aijx
k
j

aii
, for k ≥ 0 , for i = 1 , ... , n ,

x0 given .

(4.1)

Write a program returning the iterative solution given by the Jacobi method.

b. The approximate solution sequence (xk)k≥0 generated by the Gauss-Seidel method
is as follows xk+1

i =

bi −
i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

aii
, for k ≥ 0 , for i = 1 , ... , n ,

x0 given .

(4.2)

Write a program returning the iterative solution produced by the Gauss-Seidel method
(left to the reader).

8

