Exercises - Chapter 3 The Construction of a Finite Element Space

Exercise 1.

Let \mathcal{P}_{k} denote the set of all polynomials of degree less than or equal to k in one variable.
Let $\widehat{K}=[0,1]$, the following triplets $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ are they finite elements? In the favorable case, give the nodal basis of $\widehat{\mathcal{P}}$.
(a) $\widehat{\mathcal{P}}=\mathcal{P}_{1}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}\right\}$ where $N_{1}(v)=v(0)$ and $N_{2}(v)=v(1)$.
(b) $\widehat{\mathcal{P}}=\mathcal{P}_{2}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}\right\}$ where $N_{1}(v)=v(0), N_{2}(v)=v(1)$ and $N_{3}(v)=v(1 / 2)$.
(c) $\widehat{\mathcal{P}}=\mathcal{P}_{3}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ where $N_{1}(v)=v(0), N_{2}(v)=v(1), N_{3}(v)=v(1 / 3)$ and $N_{4}(v)=v(2 / 3)$.
(d) $\widehat{\mathcal{P}}=\mathcal{P}_{0}, \widehat{\mathcal{N}}=\left\{N_{1}\right\}$ where $N_{1}(v)=\int_{0}^{1} v(x) d x$.
(e) $\widehat{\mathcal{P}}=\mathcal{P}_{3}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ where $N_{1}(v)=v(0), N_{2}(v)=v(1), N_{3}(v)=v^{\prime}(0)$ and $N_{4}(v)=v^{\prime}(1)$.

Let a, b be reals and $K=[a, b]$. In each above example where $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element, give a finite element $(K, \mathcal{P}, \mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$.

Exercise 2.

Let \widehat{K} be the triangle whose vertices are the points $\widehat{a}_{1}=(0,0), \widehat{a}_{2}=(1,0)$ and $\widehat{a}_{3}=(0,1)$ i.e. $\widehat{K}=\{(0,0),(1,0),(0,1)\}, \widehat{m}_{i}$ denote the midpoints of his edges, according to \widehat{m}_{1} is the midpoint of the edge $\left(\widehat{a}_{2}, \widehat{a}_{3}\right), \widehat{m}_{2}$ is the midpoint of $\left(\widehat{a}_{3}, \widehat{a}_{1}\right), \widehat{m}_{3}$ is the midpoint of ($\widehat{a}_{1}, \widehat{a}_{2}$). The following triplets $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ are they finite elements? In the favorable case, give the nodal basis of $\widehat{\mathcal{P}}$.
(a) $\widehat{\mathcal{P}}=\mathcal{P}_{1}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1,2,3$.
(b) $\widehat{\mathcal{P}}=\mathcal{P}_{1}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}\right\}$ where $N_{i}(v)=v\left(\widehat{m}_{i}\right), i=1,2,3$.
(c) $\widehat{\mathcal{P}}=\mathcal{P}_{2}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1,2,3$ and $N_{i}(v)=$ $v\left(\widehat{m}_{i-3}\right), i=4,5,6$.
(d) $\widehat{\mathcal{P}}=\mathcal{P}_{0}, \widehat{\mathcal{N}}=\left\{N_{1}\right\}$ where $N_{1}(v)=\frac{\int_{\widehat{K}} v(\widehat{x}, \widehat{y}) d \widehat{x} d \widehat{y}}{|\widehat{K}|}$.
(e) $\widehat{\mathcal{P}}=\mathcal{P}_{2}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1,2,3$ and $N_{i}(v)=$ $\boldsymbol{\nabla} v\left(\widehat{m}_{i-3}\right) \cdot \widehat{m}_{i-3} \widehat{a}_{i-3}, i=4,5,6$, with $\boldsymbol{\nabla}$ the gradient operator, $\widehat{m}_{i-3} \widehat{a}_{i-3}$ the vector whose ends are $\widehat{m}_{i-3}, \widehat{a}_{i-3}$ for $i=4,5,6$.

Let a_{1}, a_{2}, a_{3} be points in \mathbb{R}^{2} and K the triangle whose vertices are the points whose vertices
are $a_{1}, a_{2}, a_{3}: K=\left\{a_{1}, a_{2}, a_{3}\right\}$. In each above example where $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element, give a finite element $(K, \mathcal{P}, \mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$.

Exercise 3.

Let $\mathcal{Q}_{k}=\left\{\sum_{j} c_{j} p_{j}(x) q_{j}(y)\right.$ such that p_{j}, q_{j} are polynomials of degrees $\left.\leq k\right\}$.
Let \widehat{K} be the squarre whose vertices are the points $\widehat{a}_{1}=(0,0), \widehat{a}_{2}=(1,0)$ and $\widehat{a}_{3}=(0,1)$, i.e. $\widehat{K}=\{(0,0),(1,0),(1,1),(0,1)\}$. The midpoints of the edges of this squarre are denoted by $\widehat{a}_{i}, i=5,6,7,8$, according to \widehat{a}_{5} is the midpoint of the edge ($\widehat{a}_{1}, \widehat{a}_{2}$), \widehat{a}_{6} is the midpoint of ($\left(\widehat{a}_{2}, \widehat{a}_{3}\right), \widehat{a}_{7}$ is the midpoint of the edge $\left(\widehat{a}_{3}, \widehat{a}_{4}\right), \widehat{a}_{8}$ is the midpoint of $\left(\widehat{a}_{4}, \widehat{a}_{1}\right)$. The center of the squarre is denoted by \widehat{a}_{9}.
(a) Let $\widehat{\mathcal{P}}=\mathcal{Q}_{1}, \widehat{\mathcal{N}}=\left\{N_{1}, \ldots, N_{4}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1,2,3,4$. Show that $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.
(b) Let $\widehat{\mathcal{P}}=\mathcal{Q}_{2}, \widehat{\mathcal{N}}=\left\{N_{1}, \ldots, N_{9}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1, \ldots, 9$. Show that $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

Exercise 4.

(a) Given a finite element $(K, \mathcal{P}, \mathcal{N})$, let the set $\left\{\phi_{i}: 1 \leq i \leq k\right\} \cap \mathcal{P}$ be the basis dual of \mathcal{N}. If v is a function for which all $N_{i} \in \mathcal{N}, i=1, \ldots, k$, are defined, then we defined the local interpolant by

$$
\mathcal{I}_{K} v=\sum_{i=1}^{k} N_{i}(v) \phi_{i} .
$$

Prove that the local interpolant is linear.
(b) Let T_{1} be the triangle whose vertices are $a_{1}=(0,0), a_{2}=(1,0)$ and $a_{3}=(0,1), T_{2}$ be the triangle whose vertices are $a_{2}=(1,0), a_{4}=(1,1)$ and $a_{3}=(0,1)$. Following finite elements are considered:
$\left(T_{1}, \mathcal{P}_{1}, \mathcal{N}_{1}\right)$ with $\mathcal{N}_{1}=\left\{N_{1}, N_{2}, N_{3}\right\}$ where $N_{i}(v)=v\left(a_{i}\right), i=1,2,3$;
$\left(T_{2}, \mathcal{P}_{1}, \mathcal{N}_{2}\right)$ with $\mathcal{N}_{2}=\left\{N_{4}, N_{5}, N_{6}\right\}$ where $N_{4}(v)=v\left(a_{2}\right), N_{5}(v)=v\left(a_{4}\right), N_{6}(v)=v\left(a_{3}\right)$.
Finally let f and g be functions in $\mathbb{R}^{2}: f(x, y)=e^{x y}$ and $g(x, y)=\sin (\pi(x+y) / 2)$.
Compute the local interpolations $\mathcal{I}_{K} f$ and $\mathcal{I}_{K} g$ where $K=T_{1}, T_{2}$.

Exercise 5.

Let \mathcal{P}_{k}^{n} denote the space of polynomials of degree $\leq k$ in n variables.
Prove that $\operatorname{dim} \mathcal{P}_{k}^{n}=\binom{n+k}{k}$, where the latter is the binomial coefficient.

