Exercises - Chapter 3 The Construction of a Finite Element Space

Exercise 1.

Let \mathcal{P}_k denote the set of all polynomials of degree less than or equal to k in one variable.

Let $\widehat{K} = [0, 1]$, the following triplets $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ are they finite elements? In the favorable case, give the nodal basis of $\widehat{\mathcal{P}}$.

(a)
$$\widehat{\mathcal{P}} = \mathcal{P}_1, \ \widehat{\mathcal{N}} = \{N_1, N_2\}$$
 where $N_1(v) = v(0)$ and $N_2(v) = v(1)$.

(b)
$$\widehat{\mathcal{P}} = \mathcal{P}_2, \ \widehat{\mathcal{N}} = \{N_1, N_2, N_3\}$$
 where $N_1(v) = v(0), \ N_2(v) = v(1)$ and $N_3(v) = v(1/2).$

(c) $\widehat{\mathcal{P}} = \mathcal{P}_3$, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3, N_4\}$ where $N_1(v) = v(0)$, $N_2(v) = v(1)$, $N_3(v) = v(1/3)$ and $N_4(v) = v(2/3)$.

(d) $\widehat{\mathcal{P}} = \mathcal{P}_0, \ \widehat{\mathcal{N}} = \{N_1\}$ where $N_1(v) = \int_0^1 v(x) \, dx$.

(e) $\widehat{\mathcal{P}} = \mathcal{P}_3$, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3, N_4\}$ where $N_1(v) = v(0)$, $N_2(v) = v(1)$, $N_3(v) = v'(0)$ and $N_4(v) = v'(1)$.

Let a, b be reals and K = [a, b]. In each above example where $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element, give a finite element $(K, \mathcal{P}, \mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$.

Exercise 2.

Let \widehat{K} be the triangle whose vertices are the points $\widehat{a}_1 = (0,0)$, $\widehat{a}_2 = (1,0)$ and $\widehat{a}_3 = (0,1)$ *i.e.* $\widehat{K} = \{(0,0), (1,0), (0,1)\}$, \widehat{m}_i denote the midpoints of his edges, according to \widehat{m}_1 is the midpoint of the edge $(\widehat{a}_2, \widehat{a}_3)$, \widehat{m}_2 is the midpoint of $(\widehat{a}_3, \widehat{a}_1)$, \widehat{m}_3 is the midpoint of $(\widehat{a}_1, \widehat{a}_2)$. The following triplets $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ are they finite elements? In the favorable case, give the nodal basis of $\widehat{\mathcal{P}}$.

(a)
$$\widehat{\mathcal{P}} = \mathcal{P}_1, \ \widehat{\mathcal{N}} = \{N_1, N_2, N_3\}$$
 where $N_i(v) = v(\widehat{a}_i), i = 1, 2, 3.$
(b) $\widehat{\mathcal{P}} = \mathcal{P}_1, \ \widehat{\mathcal{N}} = \{N_1, N_2, N_3\}$ where $N_i(v) = v(\widehat{m}_i), i = 1, 2, 3.$

(c)
$$\widehat{\mathcal{P}} = \mathcal{P}_2$$
, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3, N_4, N_5, N_6\}$ where $N_i(v) = v(\widehat{a}_i)$, $i = 1, 2, 3$ and $N_i(v) = v(\widehat{m}_{i-3})$, $i = 4, 5, 6$.

(d)
$$\widehat{\mathcal{P}} = \mathcal{P}_0, \, \widehat{\mathcal{N}} = \{N_1\} \text{ where } N_1(v) = \frac{\int_{\widehat{K}} v(\widehat{x}, \widehat{y}) \, d\widehat{x} \, d\widehat{y}}{|\widehat{K}|}.$$

(e) $\widehat{\mathcal{P}} = \mathcal{P}_2$, $\widehat{\mathcal{N}} = \{N_1, N_2, N_3, N_4, N_5, N_6\}$ where $N_i(v) = v(\widehat{a}_i)$, i = 1, 2, 3 and $N_i(v) = \nabla v(\widehat{m}_{i-3}) \cdot \widehat{m}_{i-3} \widehat{a}_{i-3}$, i = 4, 5, 6, with ∇ the gradient operator, $\widehat{m}_{i-3} \widehat{a}_{i-3}$ the vector whose ends are $\widehat{m}_{i-3}, \widehat{a}_{i-3}$ for i = 4, 5, 6.

Let a_1, a_2, a_3 be points in \mathbb{R}^2 and K the triangle whose vertices are the points whose vertices

are a_1, a_2, a_3 : $K = \{a_1, a_2, a_3\}$. In each above example where $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element, give a finite element $(K, \mathcal{P}, \mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$.

Exercise 3.
Let
$$Q_k = \left\{ \sum_j c_j p_j(x) q_j(y) \text{ such that } p_j, q_j \text{ are polynomials of degrees } \leq k \right\}.$$

Let \widehat{K} be the square whose vertices are the points $\widehat{a}_1 = (0,0)$, $\widehat{a}_2 = (1,0)$ and $\widehat{a}_3 = (0,1)$, *i.e.* $\widehat{K} = \{(0,0), (1,0), (1,1), (0,1)\}$. The midpoints of the edges of this square are denoted by \widehat{a}_i , i = 5, 6, 7, 8, according to \widehat{a}_5 is the midpoint of the edge $(\widehat{a}_1, \widehat{a}_2)$, \widehat{a}_6 is the midpoint of $(\widehat{a}_2, \widehat{a}_3)$, \widehat{a}_7 is the midpoint of the edge $(\widehat{a}_3, \widehat{a}_4)$, \widehat{a}_8 is the midpoint of $(\widehat{a}_4, \widehat{a}_1)$. The center of the square is denoted by \widehat{a}_9 .

(a) Let $\widehat{\mathcal{P}} = \mathcal{Q}_1, \ \widehat{\mathcal{N}} = \{N_1, \dots, N_4\}$ where $N_i(v) = v(\widehat{a}_i), i = 1, 2, 3, 4$. Show that $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

(b) Let $\widehat{\mathcal{P}} = \mathcal{Q}_2$, $\widehat{\mathcal{N}} = \{N_1, \dots, N_9\}$ where $N_i(v) = v(\widehat{a}_i), i = 1, \dots, 9$. Show that $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

Exercise 4.

(a) Given a finite element $(K, \mathcal{P}, \mathcal{N})$, let the set $\{\phi_i : 1 \leq i \leq k\} \cap \mathcal{P}$ be the basis dual of \mathcal{N} . If v is a function for which all $N_i \in \mathcal{N}$, i = 1, ..., k, are defined, then we defined the local interpolant by

$$\mathcal{I}_K v = \sum_{i=1}^k N_i(v)\phi_i \,.$$

Prove that the local interpolant is linear.

(b) Let T_1 be the triangle whose vertices are $a_1 = (0,0)$, $a_2 = (1,0)$ and $a_3 = (0,1)$, T_2 be the triangle whose vertices are $a_2 = (1,0)$, $a_4 = (1,1)$ and $a_3 = (0,1)$. Following finite elements are considered:

 $(T_1, \mathcal{P}_1, \mathcal{N}_1)$ with $\mathcal{N}_1 = \{N_1, N_2, N_3\}$ where $N_i(v) = v(a_i), i = 1, 2, 3$; $(T_2, \mathcal{P}_1, \mathcal{N}_2)$ with $\mathcal{N}_2 = \{N_4, N_5, N_6\}$ where $N_4(v) = v(a_2), N_5(v) = v(a_4), N_6(v) = v(a_3)$. Finally let f and g be functions in \mathbb{R}^2 : $f(x, y) = e^{xy}$ and $g(x, y) = \sin(\pi(x+y)/2)$. Compute the local interpolations $\mathcal{I}_K f$ and $\mathcal{I}_K g$ where $K = T_1, T_2$.

Exercise 5.

Let \mathcal{P}_k^n denote the space of polynomials of degree $\leq k$ in n variables. Prove that dim $\mathcal{P}_k^n = \binom{n+k}{k}$, where the latter is the binomial coefficient.