Exercises - Chapter 3 (Correction)

Exercise 1.

Let \mathcal{P}_{k} denote the set of all polynomials of degree less than or equal to k in one variable.

Let $\widehat{K}=[0,1]$, the following triplets $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ are they finite elements? In the favorable case, give the nodal basis of $\widehat{\mathcal{P}}$.
(a) $\widehat{\mathcal{P}}=\mathcal{P}_{1}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}\right\}$ where $N_{1}(v)=v(0)$ and $N_{2}(v)=v(1)$.

Answer

- $\widehat{K} \subset \mathbb{R}$ is a bounded closed set, $\stackrel{\grave{K}}{\mathrm{~K}} \neq \emptyset, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{1}=2$.
- $\operatorname{dim} \mathcal{N}=2=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{1}.

Let α_{1}, α_{2} be reals such that $\alpha_{1} N_{1}(v)+\alpha_{2} N_{2}(v)=0 \forall v \in \widehat{\mathcal{P}}$. Then, for $v \in \widehat{\mathcal{P}}$ such that $v(0) \neq 0$ and $v(1)=0$, one gets $\alpha_{1}=0$. By choosing $v \in \widehat{\mathcal{P}}$ such that $v(0)=0$ and $v(1) \neq 0$, one gets $\alpha_{2}=0$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis $\left(\widehat{\phi}_{1}, \widehat{\phi}_{2}\right)$ can be calculated by using the barycentric coordinates $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}$ associated to the nodes $\widehat{a}_{1}=0, \widehat{a}_{2}=1$, that is

$$
\left\{\begin{array}{ccc}
\widehat{\lambda}_{1}(\widehat{x}) & +\widehat{\lambda}_{2}(\widehat{x}) & =1 \\
\widehat{\lambda}_{1}(\widehat{x}) O \widehat{a}_{1} & +\widehat{\lambda}_{2}(\widehat{x}) O \widehat{a}_{2} & =O \widehat{M}=\widehat{x}
\end{array}\right.
$$

where O is the origine, $O \widehat{a}_{i}$ the vector whose ends are O and $\widehat{a}_{i}, O \widehat{M}$ the vector whose ends are O and \widehat{M}, \widehat{M} being the current point.
Since $O \widehat{a}_{1}=0$ and $O \widehat{a}_{2}=1$, on gets $\widehat{\lambda}_{2}(\widehat{x})=\widehat{x}$ and $\widehat{\lambda}_{1}(\widehat{x})=1-\widehat{x}$. Therefore the nodal basis ($\widehat{\phi}_{1}, \widehat{\phi}_{2}$) is given by

$$
\left\{\begin{array} { l }
{ \widehat { \phi } _ { 1 } (\widehat { x }) = \widehat { \lambda } _ { 1 } (\widehat { x }) = 1 - \widehat { x } } \\
{ \widehat { \phi } _ { 2 } (\widehat { x }) = \widehat { \lambda } _ { 2 } (\widehat { x }) = \widehat { x } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widehat{\phi}_{1}=\widehat{\lambda}_{1}, \\
\widehat{\phi}_{2}=\widehat{\lambda}_{2} .
\end{array}\right.\right.
$$

(b) $\widehat{\mathcal{P}}=\mathcal{P}_{2}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}\right\}$ where $N_{1}(v)=v(0), N_{2}(v)=v(1)$ and $N_{3}(v)=v(1 / 2)$.

Answer

- $\widehat{K} \subset \mathbb{R}$ is a bounded closed set, $\stackrel{\hat{K}}{K} \neq \emptyset, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{2}=3$.
- $\operatorname{dim} \mathcal{N}=3=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{2}.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be reals, $v \in \mathcal{P}_{2}, v(\widehat{x})=\alpha_{3} \widehat{x}^{2}+\alpha_{2} \widehat{x}+\alpha_{1}$ such that $N_{1}(v)=0, N_{2}(v)=0$, $N_{3}(v)=0$. Then

$$
\left\{\begin{array} { c }
{ \alpha _ { 1 } = 0 } \\
{ \alpha _ { 3 } + \alpha _ { 2 } = 0 } \\
{ \frac { 1 } { 4 } \alpha _ { 3 } + \frac { 1 } { 2 } \alpha _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\alpha_{1}=0 \\
\alpha_{2}=0 \\
\alpha_{3}=0
\end{array} \Longrightarrow v=0\right.\right.
$$

Then the mapping $\widehat{\mathcal{P}} \rightarrow \mathbb{R}^{3}, v \mapsto\left(N_{1}(v), N_{2}(v), N_{3}(v)\right)$ is one-by-one, in turn $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis ($\left.\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}\right)$ can be computed by using the characterization $\widehat{N}_{i}\left(\widehat{\phi}_{j}\right)=\delta_{i j}$ the Krönecker symbole. This is equivalent to

$$
\left\{\begin{array}{l}
\widehat{\phi}_{1}(0)=1 \\
\widehat{\phi}_{1}(1)=0 \\
\widehat{\phi}_{1}(1 / 2)=0
\end{array} ;\left\{\begin{array} { c }
{ \widehat { \phi } _ { 2 } (0) = 0 } \\
{ \widehat { \phi } _ { 2 } (1) = 1 } \\
{ \widehat { \phi } _ { 2 } (1 / 2) = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{c}
\widehat{\phi}_{3}(0)=0 \\
\widehat{\phi}_{3}(1)=0 \\
\widehat{\phi}_{3}(1 / 2)=1
\end{array}\right.\right.\right.
$$

Then

$$
\left\{\begin{array} { l }
{ \widehat { \phi } _ { 1 } (\widehat { x }) = 2 (\widehat { x } - 1) (\widehat { x } - \frac { 1 } { 2 }) } \\
{ \widehat { \phi } _ { 2 } (\widehat { x }) = 2 \widehat { x } (\widehat { x } - \frac { 1 } { 2 }) } \\
{ \widehat { \phi } _ { 3 } (\widehat { x }) = - 4 \widehat { x } (\widehat { x } - 1) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widehat{\phi}_{1}=2 \widehat{\lambda}_{1}\left(\widehat{\lambda}_{1}-\frac{1}{2}\right) \\
\widehat{\phi}_{2}=\widehat{\lambda}_{2}\left(\widehat{\lambda}_{2}-\frac{1}{2}\right) \\
\widehat{\phi}_{3}=4 \widehat{\lambda}_{1} \widehat{\lambda}_{2}
\end{array}\right.\right.
$$

where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}$ are the barycentric coordinates associated to the nodes $\widehat{a}_{1}=0, \widehat{a}_{2}=1$.
(c) $\widehat{\mathcal{P}}=\mathcal{P}_{3}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ where $N_{1}(v)=v(0), N_{2}(v)=v(1), N_{3}(v)=v(1 / 3)$ and $N_{4}(v)=v(2 / 3)$.

Answer

- $\widehat{K} \subset \mathbb{R}$ is a bounded closed set, $\stackrel{\grave{K}}{K} \neq \emptyset, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{3}=4$.
- $\operatorname{dim} \mathcal{N}=4=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{3}.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} be reals, $v \in \mathcal{P}_{3}, v(\widehat{x})=\alpha_{4} \widehat{x}^{3}+\alpha_{3} \widehat{x}^{2}+\alpha_{2} \widehat{x}+\alpha_{1}$ such that $N_{1}(v)=0$, $N_{2}(v)=0, N_{3}(v)=0$ and $N_{4}(v)=0$. Then $v=0$ since $v \in \mathcal{P}_{3}$ owns 4 distinct zeros $0,1 / 3,1 / 2,1$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis $\left(\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}, \widehat{\phi}_{4}\right)$ is given by

$$
\left\{\begin{array} { l }
{ \widehat { \phi } _ { 1 } (\widehat { x }) = \frac { 9 } { 2 } (\widehat { x } - \frac { 1 } { 3 }) (\widehat { x } - \frac { 2 } { 3 }) (\widehat { x } - 1) } \\
{ \widehat { \phi } _ { 2 } (\widehat { x }) = \frac { 9 } { 2 } \widehat { x } (\widehat { x } - \frac { 1 } { 3 }) (\widehat { x } - \frac { 2 } { 3 }) } \\
{ \widehat { \phi } _ { 3 } (\widehat { x }) = \frac { 2 7 } { 2 } \widehat { x } (\widehat { x } - \frac { 2 } { 3 }) (\widehat { x } - 1) } \\
{ \widehat { \phi } _ { 4 } (\widehat { x }) = \frac { 2 7 } { 2 } \widehat { x } (\widehat { x } - \frac { 1 } { 3 }) (\widehat { x } - 1) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widehat{\phi}_{1}=\frac{9}{2} \widehat{\lambda}_{1}\left(\widehat{\lambda}_{1}-\frac{1}{3}\right)\left(\widehat{\lambda}_{1}-\frac{2}{3}\right) \\
\widehat{\phi}_{2}=\frac{9}{2} \widehat{\lambda}_{2}\left(\widehat{\lambda}_{2}-\frac{1}{3}\right)\left(\widehat{\lambda}_{2}-\frac{2}{3}\right) \\
\widehat{\phi}_{3}=\widehat{\lambda}_{1} \widehat{\lambda}_{2}\left(\frac{27}{2} \widehat{\lambda}_{1}-\frac{9}{2}\right) \\
\widehat{\phi}_{4}=\widehat{\lambda}_{1} \widehat{\lambda}_{2}\left(\frac{27}{2} \widehat{\lambda}_{2}-\frac{9}{2}\right)
\end{array}\right.\right.
$$

where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}$ are the barycentric coordinates associated to the nodes $\widehat{a}_{1}=0, \widehat{a}_{2}=1$.
(d) $\widehat{\mathcal{P}}=\mathcal{P}_{0}, \widehat{\mathcal{N}}=\left\{N_{1}\right\}$ where $N_{1}(v)=\int_{0}^{1} v(x) d x$.

Answer

- $\widehat{K} \subset \mathbb{R}$ is a bounded closed set, $\stackrel{\hat{K}}{K} \neq \emptyset, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{0}=1$.
- $\operatorname{dim} \mathcal{N}=1=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{0}.

Let α_{1} be a real, $v \in \mathcal{P}_{0}, v(\widehat{x})=\alpha_{1}$ such that $N_{1}(v)=0$. Then $v=0$ since $0=\int_{0}^{1} \alpha_{1} d x=\alpha_{1}$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.

Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis $\left\{\widehat{\phi}_{1}\right\}$ where

$$
\widehat{\phi}_{1}(\widehat{x})=1
$$

(e) $\widehat{\mathcal{P}}=\mathcal{P}_{3}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ where $N_{1}(v)=v(0), N_{2}(v)=v(1), N_{3}(v)=v^{\prime}(0)$ and $N_{4}(v)=v^{\prime}(1)$.

Answer

- $\widehat{K} \subset \mathbb{R}$ is a bounded closed set, $\stackrel{\hat{K}}{K} \neq \emptyset, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{3}=4$.
- $\operatorname{dim} \mathcal{N}=4=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{3}.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4} be reals, $v \in \mathcal{P}_{3}, v(\widehat{x})=\alpha_{4} \widehat{x}^{3}+\alpha_{3} \widehat{x}^{2}+\alpha_{2} \widehat{x}+\alpha_{1}$ such that $N_{1}(v)=0$, $N_{2}(v)=0, N_{3}(v)=0$. Then $v=0$ since $v \in \mathcal{P}_{3}$ owns zeros 0,1 , the multiplicity order of each zero is 2 . Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore ($\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}}$) is a finite element.

- The nodal basis $\left(\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}, \widehat{\phi}_{4}\right)$ is given by

$$
\left\{\begin{array} { l }
{ \widehat { \phi } _ { 1 } (\widehat { x }) = (2 \widehat { x } + 1) (\widehat { x } - 1) ^ { 2 } } \\
{ \widehat { \phi } _ { 2 } (\widehat { x }) = (- 2 \widehat { x } + 3) \widehat { x } ^ { 2 } } \\
{ \widehat { \phi } _ { 3 } (\widehat { x }) = \widehat { x } (\widehat { x } - 1) ^ { 2 } } \\
{ \widehat { \phi } _ { 4 } (\widehat { x }) = \widehat { x } ^ { 2 } (\widehat { x } - 1) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widehat{\phi}_{1}=\widehat{\lambda}_{1}^{2}\left(3-2 \widehat{\lambda}_{1}\right), \\
\widehat{\phi}_{2}=\widehat{\lambda}_{2}^{2}\left(3-2 \widehat{\lambda}_{2}\right) \\
\widehat{\phi}_{3}=\widehat{\lambda}_{1}^{2} \widehat{\lambda}_{2} \\
\widehat{\phi}_{4}=\widehat{\lambda}_{1} \widehat{\lambda}_{2}^{2}
\end{array}\right.\right.
$$

where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}$ are the barycentric coordinates associated to the nodes $\widehat{a}_{1}=0, \widehat{a}_{2}=1$.
Let a, b be reals and $K=[a, b]$. In each above example where $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element, give a finite element $(K, \mathcal{P}, \mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$.

Answer

Let F_{K} be the following mapping $\widehat{K} \rightarrow K, \widehat{x} \mapsto x=F_{K}(\widehat{x})=(b-a) \widehat{x}+a$.
The mapping F_{K} is affine.
One has $F_{K}(0)=a, F_{K}(1)=b$.
$F_{K}(\widehat{K})=K: \widehat{K}$ and K are affine equivalent.
Regarding the evaluation of a function v on K, one can use the following scheme

$$
\widehat{K} \xrightarrow{F_{K}} K \xrightarrow{v} \mathbb{R},
$$

so that

$$
\widehat{v}(\widehat{x})=\left(v \circ F_{K}\right)(\widehat{x})=v\left(F_{K}(\widehat{x})\right)=v(x) .
$$

Then $\widehat{v}\left(\widehat{a_{i}}\right)=v\left(a_{i}\right)$ where $F_{K}\left(\widehat{a_{i}}\right)=a_{i}$.
From $\widehat{v}(\widehat{x})=\left(v \circ F_{K}\right)(\widehat{x})$ the derivatives can be computed as follows

$$
\widehat{v}^{\prime}(\widehat{x})=v^{\prime}\left(F_{K}(\widehat{x})\right) \cdot F_{K}^{\prime}(\widehat{x})=v^{\prime}\left(F_{K}(\widehat{x})\right) \cdot(b-a) .
$$

Then $\widehat{v}^{\prime}\left(\widehat{a_{i}}\right)=v^{\prime}\left(a_{i}\right) \cdot(b-a)$ where $F_{K}\left(\widehat{a_{i}}\right)=a_{i}$
The barycentric coordinates associated to the edges a and b of K are defined by

$$
\lambda(x)=\left(\widehat{\lambda} \circ F_{K}^{-1}\right)(x)=\widehat{\lambda}\left(F_{K}^{-1}(x)\right)=\widehat{\lambda}\left(\frac{x-a}{b-a}\right) .
$$

The above formula uses the scheme $K \xrightarrow{F_{K}^{-1}} \widehat{K} \xrightarrow{\widehat{\lambda}} \mathbb{R}$.
Then

$$
\left\{\begin{array}{l}
\lambda_{1}(x)=1-\frac{x-a}{b-a}, \\
\lambda_{2}(x)=\frac{x-a}{b-a},
\end{array}\right.
$$

Therefore
(a) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where

- $\mathcal{P}=\mathcal{P}_{1}$, and the nodal basis $\left(\phi_{1}, \phi_{2}\right)$ is given by,

$$
\left\{\begin{array}{l}
\phi_{1}(x)=\lambda_{1}(x), \\
\phi_{2}(x)=\lambda_{2}(x)
\end{array}\right.
$$

where λ_{1}, λ_{2} are the barycentric coordinates associated to the nodes a, b.

- $\mathcal{N}=\left\{N_{1}, N_{2}\right\}$ with $N_{1}(v)=v(a)$ and $N_{2}(v)=v(b)$.
(b) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where
- $\mathcal{P}=\mathcal{P}_{2}$, and the nodal basis $\left(\phi_{1}, \phi_{2}, \phi_{3}\right)$ is given by,

$$
\left\{\begin{array}{l}
\phi_{1}=2 \lambda_{2}\left(\lambda_{1}-\frac{1}{2}\right) \\
\phi_{2}=2 \lambda_{2}\left(\lambda_{2}-\frac{1}{2}\right) \\
\phi_{3}=4 \lambda_{1} \lambda_{2}
\end{array}\right.
$$

where λ_{1}, λ_{2} are the barycentric coordinates associated to the nodes a, b.

- $\mathcal{N}=\left\{N_{1}, N_{2}, N_{3}\right\}$ with $N_{1}(v)=v(a), N_{2}(v)=v(b)$ and $N_{3}(v)=v\left(\frac{a+b}{2}\right)$.
(c) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where
- $\mathcal{P}=\mathcal{P}_{3}$, and the nodal basis $\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)$ is given by,

$$
\left\{\begin{array}{l}
\phi_{1}=\frac{9}{2} \lambda_{1}\left(\lambda_{1}-\frac{1}{3}\right)\left(\lambda_{1}-\frac{2}{3}\right) \\
\phi_{2}=\frac{9}{2} \lambda_{2}\left(\lambda_{2}-\frac{1}{3}\right)\left(\lambda_{2}-\frac{2}{3}\right) \\
\phi_{3}=\lambda_{1} \lambda_{2}\left(\frac{27}{2} \lambda_{1}-\frac{9}{2}\right) \\
\phi_{4}=\lambda_{1} \lambda_{2}\left(\frac{27}{2} \lambda_{2}-\frac{9}{2}\right)
\end{array}\right.
$$

where λ_{1}, λ_{2} are the barycentric coordinates associated to the nodes a, b.

- $\mathcal{N}=\left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ with

$$
N_{1}(v)=v(a), N_{2}(v)=v(b), N_{3}(v)=v\left(a+\frac{1}{3}(b-a)\right) \text { and } N_{4}(v)=v\left(a+\frac{2}{3}(b-a)\right) .
$$

(d) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where

- $\mathcal{P}=\mathcal{P}_{0}$, and the nodal basis ϕ_{1} is given by,

$$
\phi_{1}=1 .
$$

- $\mathcal{N}=\left\{N_{1}\right\}$ where $N_{1}(v)=\frac{\int_{a}^{b} v(x) d x}{b-a}$.
(e) $(K, \mathcal{P}, \mathcal{N})$ is affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ where
- $\mathcal{P}=\mathcal{P}_{3}$, and the nodal basis $\left(\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}\right)$ is given by,

$$
\left\{\begin{array}{l}
\phi_{1}=\lambda_{1}^{2}\left(3-2 \lambda_{1}\right), \\
\phi_{2}=\lambda_{2}^{2}\left(3-2 \lambda_{2}\right), \\
\phi_{3}=\lambda_{1}^{2} \lambda_{2}, \\
\phi_{4}=\lambda_{1} \lambda_{2}^{2},
\end{array}\right.
$$

where λ_{1}, λ_{2} are the barycentric coordinates associated to the nodes a, b.

- $\mathcal{N}=\left\{N_{1}, N_{2}, N_{3}, N_{4}\right\}$ with $N_{1}(v)=v(a), N_{2}(v)=v(b), N_{3}(v)=v^{\prime}(a) \cdot(b-a)$ and $N_{4}(v)=v^{\prime}(b) \cdot(b-a)$.

Exercise 2.

Let \widehat{K} be the triangle whose vertices are the points $\widehat{a}_{1}=(0,0), \widehat{a}_{2}=(1,0)$ and $\widehat{a}_{3}=(0,1)$ i.e. $\widehat{K}=\{(0,0),(1,0),(0,1)\}, \widehat{m}_{i}$ denote the midpoints of his edges, according to \widehat{m}_{1} is the midpoint of the edge $\left(\widehat{a}_{2}, \widehat{a}_{3}\right), \widehat{m}_{2}$ is the midpoint of ($\widehat{a}_{3}, \widehat{a}_{1}$), \widehat{m}_{3} is the midpoint of ($\widehat{a}_{1}, \widehat{a}_{2}$).

The following triplets $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ are they finite elements? In the favorable case, give the nodal basis of $\widehat{\mathcal{P}}$.
(a) $\widehat{\mathcal{P}}=\mathcal{P}_{1}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1,2,3$.

Answer

- $\widehat{K} \subset \mathbb{R}^{2}$ is a bounded closed set, $\stackrel{\hat{K}}{K} \neq \varnothing, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{1}=3$.
- $\operatorname{dim} \mathcal{N}=3=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{1}.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be reals, $v \in \mathcal{P}_{1}, v(\widehat{x}, \widehat{y})=\alpha_{3} \widehat{x}+\alpha_{2} \widehat{y}+\alpha_{1}$ such that $N_{1}(v)=0, N_{2}(v)=0$, $N_{3}(v)=0$. Then $\alpha_{1}=0, \alpha_{2}=0$ and $\alpha_{3}=0$. Then $\hat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis $\left(\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}\right)$ is given by

$$
\left\{\begin{array} { l }
{ \widehat { \phi } _ { 1 } (\widehat { x } , \widehat { y }) = 1 - \widehat { x } - \widehat { y } } \\
{ \widehat { \phi } _ { 2 } (\widehat { x } , \widehat { y }) = \widehat { x } } \\
{ \widehat { \phi } _ { 3 } (\widehat { x } , \widehat { y }) = \widehat { y } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widehat{\phi}_{1}=\widehat{\lambda}_{1} \\
\widehat{\phi}_{2}=\widehat{\lambda}_{2} \\
\widehat{\phi}_{3}=\widehat{\lambda}_{3}
\end{array}\right.\right.
$$

where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}$ and $\widehat{\lambda}_{3}$ are the barycentric coordinates associated to the nodes $\widehat{a}_{1}=(0,0)$, $\widehat{a}_{2}=(1,0)$ and $\widehat{a}_{3}=(0,1)$.
(b) $\widehat{\mathcal{P}}=\mathcal{P}_{1}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}\right\}$ where $N_{i}(v)=v\left(\widehat{m}_{i}\right), i=1,2,3$.

Answer

- $\widehat{K} \subset \mathbb{R}^{2}$ is a bounded closed set, $\stackrel{\stackrel{\hat{K}}{K}}{ } \neq \varnothing, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{1}=3$.
- $\operatorname{dim} \mathcal{N}=3=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{1}.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be reals, $v \in \mathcal{P}_{1}, v(\widehat{x}, \widehat{y})=\alpha_{3} \widehat{x}+\alpha_{2} \widehat{y}+\alpha_{1}$ such that $N_{1}(v)=0, N_{2}(v)=0$, $N_{3}(v)=0$. Then $\alpha_{1}=0, \alpha_{2}=0$ and $\alpha_{3}=0$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis $\left(\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}\right)$ is given by

$$
\left\{\begin{array} { l }
{ \widehat { \phi } _ { 1 } (\widehat { x } , \widehat { y }) = 2 \widehat { x } + 2 \widehat { y } - 1 } \\
{ \widehat { \phi } _ { 2 } (\widehat { x } , \widehat { y }) = - 2 \widehat { x } + 1 } \\
{ \widehat { \phi } _ { 3 } (\widehat { x } , \widehat { y }) = - 2 \widehat { y } + 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\widehat{\phi}_{1}=1-2 \widehat{\lambda}_{1} \\
\widehat{\phi}_{2}=1-2 \widehat{\lambda}_{2} \\
\widehat{\phi}_{3}=1-2 \widehat{\lambda}_{3}
\end{array}\right.\right.
$$

where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}$ and $\widehat{\lambda}_{3}$ are the barycentric coordinates associated to the nodes $\widehat{a}_{1}=(0,0)$, $\widehat{a}_{2}=(1,0)$ and $\widehat{a}_{3}=(0,1)$.
(c) $\widehat{\mathcal{P}}=\mathcal{P}_{2}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1,2,3$ and $N_{i}(v)=v\left(\widehat{m}_{i-3}\right), i=4,5,6$.

Answer

- $\widehat{K} \subset \mathbb{R}^{2}$ is a bounded closed set, $\stackrel{\hat{K}}{K} \neq \varnothing, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{2}=6$.
- $\operatorname{dim} \mathcal{N}=6=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{2}.

Let $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}$ be linear functions which define the edges $\left(\widehat{a}_{1}, \widehat{a}_{2}\right)$, $\left(\widehat{a}_{2}, \widehat{a}_{3}\right)$, $\left(\widehat{m}_{1}, \widehat{m}_{2}\right),\left(\widehat{m}_{2}, \widehat{m}_{3}\right),\left(\widehat{m}_{3}, \widehat{m}_{1}\right)$, respectively, that is $L_{i}(\widehat{x}, \widehat{y})=0$ for $i=1, \ldots, 6$ on the corresponding edge. The functions L_{i} are

$$
\begin{aligned}
& \quad L_{1}(\widehat{x}, \widehat{y})=\widehat{y}, L_{2}(\widehat{x}, \widehat{y})=1-\widehat{x}-\widehat{y}, L_{3}(\widehat{x}, \widehat{y})=\widehat{x}, L_{4}(\widehat{x}, \widehat{y})=\frac{1}{2}-\widehat{y}, L_{5}(\widehat{x}, \widehat{y})=\frac{1}{2}-\widehat{x}-\widehat{y}, \\
& L_{6}(\widehat{x}, \widehat{y})=\frac{1}{2}-\widehat{x} .
\end{aligned}
$$

Let $v \in \mathcal{P}_{2}$ such that $N_{1}(v)=0, N_{2}(v)=0, N_{3}(v)=0, N_{4}(v)=0, N_{5}(v)=0, N_{6}(v)=0$ i.e. $v\left(\widehat{a}_{i}\right)=0, i=1,2,3$ and $v\left(\widehat{m}_{i}\right)=0, i=1,2,3$. The polynomial v vanishes at two points of edges $\left(\widehat{a}_{2}, \widehat{a}_{3}\right),\left(\widehat{m}_{2}, \widehat{m}_{3}\right)$. Then there exists a constant c such that $v=c L_{2} L_{5}$. But v vanishes at \widehat{a}_{1} :

$$
0=v(0,0)=c L_{2}(0,0) L_{5}(0,0) \Longrightarrow c=0
$$

since $L_{2}(0,0) \neq 0$ and $L_{5}(0,0) \neq 0$.
Then $v=0$ and $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis ($\left.\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}, \widehat{\phi}_{4}, \widehat{\phi}_{5}, \widehat{\phi}_{6}\right)$ is given by

$$
\left\{\begin{array} { l }
{ \widehat { \phi } _ { 1 } (\widehat { x } , \widehat { y }) = 2 (\frac { 1 } { 2 } - \widehat { x } - \widehat { y }) (1 - \widehat { x } - \widehat { y }) } \\
{ \widehat { \phi } _ { 2 } (\widehat { x } , \widehat { y }) = - 2 (\frac { 1 } { 2 } - \widehat { x }) \widehat { x } } \\
{ \widehat { \phi } _ { 3 } (\widehat { x } , \widehat { y }) = - 2 \widehat { y } (\frac { 1 } { 2 } - \widehat { y }) } \\
{ \widehat { \phi } _ { 4 } (\widehat { x } , \widehat { y }) = 4 \widehat { x } \widehat { y } } \\
{ \widehat { \phi } _ { 5 } (\widehat { x } , \widehat { y }) = 4 \widehat { y } (1 - \widehat { x } - \widehat { y }) } \\
{ \hat { \phi } _ { 6 } (\widehat { x } , \widehat { y }) = 4 \widehat { x } (1 - \widehat { x } - \widehat { y }) }
\end{array} \quad \Longleftrightarrow \left\{\begin{array}{l}
\widehat{\phi}_{1}=\widehat{\lambda}_{1}\left(2 \widehat{\lambda}_{1}-1\right), \\
\widehat{\phi}_{2}=\widehat{\lambda}_{2}\left(2 \widehat{\lambda}_{2}-1\right), \\
\widehat{\phi}_{3}=\widehat{\lambda}_{3}\left(2 \widehat{\lambda}_{3}-1\right), \\
\widehat{\phi}_{4}=4 \widehat{\lambda}_{2} \widehat{\lambda}_{3} \\
\widehat{\phi}_{5}=4 \widehat{\lambda}_{3} \widehat{\lambda}_{1} \\
\widehat{\phi}_{6}=4 \widehat{\lambda}_{1} \widehat{\lambda}_{2}
\end{array}\right.\right.
$$

where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}$ and $\widehat{\lambda}_{3}$ are the barycentric coordinates associated to the nodes $\widehat{a}_{1}=(0,0)$, $\widehat{a}_{2}=(1,0)$ and $\widehat{a}_{3}=(0,1)$.
(d) $\widehat{\mathcal{P}}=\mathcal{P}_{0}, \widehat{\mathcal{N}}=\left\{N_{1}\right\}$ where $N_{1}(v)=\frac{\int_{\widehat{K}} v(\widehat{x}, \widehat{y}) d \widehat{x} d \widehat{y}}{|\widehat{K}|}$.

Answer

- $\widehat{K} \subset \mathbb{R}$ is a bounded closed set, $\hat{\widehat{K}} \neq \emptyset, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{0}=1$.
- $\operatorname{dim} \mathcal{N}=1=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{0}.

Let α_{1} be a real, $v \in \mathcal{P}_{0}, v(\widehat{x}, \widehat{y})=\alpha_{1}$ such that $N_{1}(v)=0$. Then $v=0$ since $0=$ $\int_{0}^{1} \alpha_{1} d \widehat{x} d \widehat{y}=\alpha_{1}$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis $\left\{\widehat{\phi}_{1}\right\}$ where

$$
\widehat{\phi}_{1}(\widehat{x}, \widehat{y})=1
$$

(e) $\widehat{\mathcal{P}}=\mathcal{P}_{2}, \widehat{\mathcal{N}}=\left\{N_{1}, N_{2}, N_{3}, N_{4}, N_{5}, N_{6}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1,2,3$ and $N_{i}(v)=\nabla v\left(\widehat{m}_{i-3}\right) \cdot \widehat{m}_{i-3} \widehat{a}_{i-3}, i=4,5,6$, with $\boldsymbol{\nabla}$ the gradient operator, $\widehat{m}_{i-3} \widehat{a}_{i-3}$ the vector whose ends are $\widehat{m}_{i-3}, \widehat{a}_{i-3}$ for $i=4,5,6$.

Answer

- $\widehat{K} \subset \mathbb{R}^{2}$ is a bounded closed set, $\widehat{\widehat{K}} \neq \varnothing, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{P}_{2}=6$.
- $\operatorname{dim} \mathcal{N}=6=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{P}_{2}.

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}$ be reals, $v \in \mathcal{P}_{2}, v(\widehat{x}, \widehat{y})=\alpha_{6} \widehat{x}^{2}+\alpha_{5} \widehat{y}^{2}+\alpha_{4} \widehat{x} \widehat{y}+\alpha_{3} \widehat{x}+\alpha_{2} \widehat{y}+\alpha_{1}$ such that $N_{1}(v)=0, N_{2}(v)=0, N_{3}(v)=0, N_{4}(v)=0, N_{5}(v)=0, N_{6}(v)=0$. Then $\alpha_{1}=0$, $\alpha_{2}=0, \alpha_{3}=0, \alpha_{4}=0, \alpha_{5}=0$ and $\alpha_{6}=0$. Then $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis $\left(\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}, \widehat{\phi}_{4}, \widehat{\phi}_{5}, \widehat{\phi}_{6}\right)$ is given by

$$
\left\{\begin{array}{l}
\widehat{\phi}_{1}(\widehat{x}, \widehat{y})=\frac{1}{2} \widehat{x}^{2}+\frac{1}{2} \widehat{y}^{2}+2 \widehat{x} \widehat{y}-\frac{3}{2} \widehat{x}-\frac{3}{2} \widehat{y}+1 \\
\widehat{\phi}_{2}(\widehat{x}, \widehat{y})=\frac{1}{2} \widehat{x}^{2}-\widehat{y}^{2}-\widehat{x} \widehat{y}+\frac{1}{2} \widehat{x}+\widehat{y} \\
\widehat{\phi}_{3}(\widehat{x}, \widehat{y})=-\widehat{x}^{2}+\frac{1}{2} \widehat{y}^{2}-\widehat{x} \widehat{y}+\widehat{x}+\frac{1}{2} \widehat{y} \\
\widehat{\phi}_{4}(\widehat{x}, \widehat{y})=-\widehat{x}^{2}-\widehat{y}^{2}-2 \widehat{x} \widehat{y}+\widehat{x}+\widehat{y} \\
\widehat{\phi}_{5}(\widehat{x}, \widehat{y})=-\widehat{x}^{2}+\widehat{x} \\
\widehat{\phi}_{6}(\widehat{x}, \widehat{y})=-\widehat{\lambda}_{3}+\widehat{y}
\end{array} \quad \Longleftrightarrow \widehat{\lambda}_{1}\right)
$$

where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}$ and $\widehat{\lambda}_{3}$ are the barycentric coordinates associated to the nodes $\widehat{a}_{1}=(0,0)$, $\widehat{a}_{2}=(1,0)$ and $\widehat{a}_{3}=(0,1)$.

Let a_{1}, a_{2}, a_{3} be points in \mathbb{R}^{2} and K the triangle whose vertices are the points whose vertices are $a_{1}, a_{2}, a_{3}: K=\left\{a_{1}, a_{2}, a_{3}\right\}$. In each above example where $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element, give a finite element $(K, \mathcal{P}, \mathcal{N})$ affine equivalent to $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$.

Answer

Let F_{K} be the following mapping $\widehat{K} \rightarrow K,(\widehat{x}, \widehat{y}) \mapsto(x, y)=F_{K}(\widehat{x}, \widehat{y})$,

$$
F_{K}(\widehat{x}, \widehat{y})=A_{K}\binom{\widehat{x}}{\widehat{y}}+b=\left(\begin{array}{cc}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right)\binom{\widehat{x}}{\widehat{y}}+\binom{x_{1}}{y_{1}}
$$

where $a_{1}=\binom{x_{1}}{y_{1}}, a_{2}=\binom{x_{2}}{y_{2}}, a_{3}=\binom{x_{3}}{y_{3}}$.

If the triangle $K=\left\{a_{1}, a_{2}, a_{3}\right\}$ is non-degenerate the mapping F_{K} is invertible. One has $\operatorname{det}\left(A_{K}\right)=2 \operatorname{Area}(K)$.
The barycentric coordinates $\lambda_{i}: K \rightarrow \mathbb{R}$ associated to the edges a_{i} of K can be computed by using the scheme $K \xrightarrow{F_{K}^{-1}} \widehat{K} \xrightarrow{\widehat{\lambda}} \mathbb{R}$. Then the barycentric coordinates are defined by

$$
\lambda(x, y)=\left(\widehat{\lambda} \circ F_{K}^{-1}\right)(x, y)=\widehat{\lambda}\left(F_{K}^{-1}(x, y)\right)=\widehat{\lambda}(\widehat{x}, \widehat{y}) .
$$

From $\binom{x}{y}=A_{K}\binom{\widehat{x}}{\widehat{y}}+\binom{x_{1}}{y_{1}}$, one gets $\binom{\widehat{x}}{\widehat{y}}=A_{K}^{-1}\binom{x-x_{1}}{y-y_{1}}$.
Since $A_{K}^{-1}=\frac{1}{\operatorname{det} A_{K}}\left(\begin{array}{cc}y_{3}-y_{1} & -\left(x_{3}-x_{1}\right) \\ -\left(y_{2}-y_{1}\right) & x_{2}-x_{1}\end{array}\right)$, one gets

$$
\begin{gathered}
\lambda_{2}(x, y)=\widehat{\lambda}_{1}(\widehat{x}, \widehat{y})=\widehat{x}=\frac{1}{\operatorname{det} A_{K}}\left[\left(y_{3}-y_{1}\right)\left(x-x_{1}\right)-\left(x_{3}-x_{1}\right)\left(y-y_{1}\right)\right] \\
\lambda_{3}(x, y)=\widehat{\lambda}_{2}(\widehat{x}, \widehat{y})=\widehat{y}=\frac{1}{\operatorname{det} A_{K}}\left[-\left(y_{2}-y_{1}\right)\left(x-x_{1}\right)+\left(x_{2}-x_{1}\right)\left(y-y_{1}\right)\right] \\
\lambda_{1}(x, y)=1-\widehat{x}-\widehat{y}=\frac{1}{\operatorname{det} A_{K}}\left[\left(y_{2}-y_{3}\right)\left(x-x_{2}\right)-\left(x_{2}-x_{3}\right)\left(y-y_{2}\right)\right]
\end{gathered}
$$

Straightforward computations lead to the desired affine equivalents finite elements.

Exercise 3.

Let $\mathcal{Q}_{k}=\left\{\sum_{j} c_{j} p_{j}(x) q_{j}(y)\right.$ such that p_{j}, q_{j} are polynomials of degrees $\left.\leq k\right\}$.
Let \widehat{K} be the squarre whose vertices are the points $\widehat{a}_{1}=(0,0), \widehat{a}_{2}=(1,0), \widehat{a}_{3}=(1,1)$ and $\widehat{a}_{4}=(0,1)$, i.e. $\widehat{K}=\{(0,0),(1,0),(1,1),(0,1)\}$. The midpoints of the edges of this squarre are denoted by $\widehat{a}_{i}, i=5,6,7,8$, according to \widehat{a}_{5} is the midpoint of the edge ($\widehat{a}_{1}, \widehat{a}_{2}$), \widehat{a}_{6} is the midpoint of ($\widehat{a}_{2}, \widehat{a}_{3}$), \widehat{a}_{7} is the midpoint of the edge ($\widehat{a}_{3}, \widehat{a}_{4}$), \widehat{a}_{8} is the midpoint of $\left(\widehat{a}_{4}, \widehat{a}_{1}\right)$. The center of the squarre is denoted by \widehat{a}_{9}.
(a) Let $\widehat{\mathcal{P}}=\mathcal{Q}_{1}, \widehat{\mathcal{N}}=\left\{N_{1}, \ldots, N_{4}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1,2,3,4$. Show that $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

Answer

Let us recall that the dimension of the space \mathcal{Q}_{k} is

$$
\operatorname{dim} \mathcal{Q}_{k}=\left(\operatorname{dim} \mathcal{P}_{k}\right)^{2}=(k+1)^{2}
$$

where \mathcal{P}_{k} denote the set of all polynomials of degree less than or equal to k in one variable.

- $\widehat{K} \subset \mathbb{R}^{2}$ is a bounded closed set, $\hat{K} \neq \emptyset, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{Q}_{1}=(1+1)^{2}=4$.
- $\operatorname{dim} \mathcal{N}=4=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{Q}_{1}.

Let $L_{1}, L_{2}, L_{3}, L_{4}$ be linear functions in one variable which define edges of the squarre, $\left(\widehat{a}_{1}, \widehat{a}_{2}\right),\left(\widehat{a}_{2}, \widehat{a}_{3}\right),\left(\widehat{a}_{3}, \widehat{a}_{4}\right),\left(\widehat{a}_{4}, \widehat{a}_{1}\right)$, respectively,

$$
L_{1}(\widehat{x}, \widehat{y})=\widehat{y}, L_{2}(\widehat{x}, \widehat{y})=1-\widehat{x}, L_{3}(\widehat{x}, \widehat{y})=1-\widehat{y}, L_{4}(\widehat{x}, \widehat{y})=\widehat{x}
$$

Let $v \in \mathcal{Q}_{1}$ such that $N_{1}(v)=0, N_{2}(v)=0, N_{3}(v)=0, N_{4}(v)=0$ i.e. $v\left(\widehat{a}_{i}\right)=0$, $i=1,2,3,4$. The polynomial v vanishes at two points $\widehat{a}_{1}, \widehat{a}_{2}$ of the edge ($\widehat{a}_{1}, \widehat{a}_{2}$). The polynomial v vanishes also at two points $\widehat{a}_{2}, \widehat{a}_{3}$ of the edge $\left(\widehat{a}_{2}, \widehat{a}_{3}\right)$. Then there exists a constant c such that $v=c L_{1} L_{2}$. But v vanishes at \widehat{a}_{4} :

$$
0=v(0,1)=c L_{1}(0,1) L_{2}(0,1) \Longrightarrow c=0
$$

since $L_{1}(0,1) \neq 0$ and $L_{2}(0,1) \neq 0$.
Then $v=0$ and $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis ($\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}, \widehat{\phi}_{4}$) is given by
where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}, \widehat{\lambda}_{3}$ and $\widehat{\lambda}_{4}$ are introduced for commodity.
(b) Let $\widehat{\mathcal{P}}=\mathcal{Q}_{2}, \widehat{\mathcal{N}}=\left\{N_{1}, \ldots, N_{9}\right\}$ where $N_{i}(v)=v\left(\widehat{a}_{i}\right), i=1, \ldots ., 9$. Show that $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.
- $\widehat{K} \subset \mathbb{R}^{2}$ is a bounded closed set, $, \stackrel{\hat{K}}{K} \neq \varnothing, \partial \widehat{K}$ is smooth.
- $\operatorname{dim} \mathcal{Q}_{2}=(2+1)^{2}=9$.
- $\operatorname{dim} \mathcal{N}=4=\operatorname{dim} \widehat{\mathcal{P}}^{\prime}$ the dual of \mathcal{Q}_{2}.

Let $L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}$ be linear functions in one variable which define the edges, $\left(\widehat{a}_{1}, \widehat{a}_{2}\right)$, $\left(\widehat{a}_{2}, \widehat{a}_{3}\right),\left(\widehat{a}_{3}, \widehat{a}_{4}\right),\left(\widehat{a}_{4}, \widehat{a}_{1}\right),\left(\widehat{a}_{5}, \widehat{a}_{7}\right),\left(\widehat{a}_{8}, \widehat{a}_{6}\right)$, respectively,
$L_{1}(\widehat{x}, \widehat{y})=\widehat{y}, L_{2}(\widehat{x}, \widehat{y})=1-\widehat{x}, L_{3}(\widehat{x}, \widehat{y})=1-\widehat{y}, L_{4}(\widehat{x}, \widehat{y})=\widehat{x}, L_{5}(\widehat{x}, \widehat{y})=\frac{1}{2}-\widehat{x}$, $L_{6}(\widehat{x}, \widehat{y})=\frac{1}{2}-\widehat{y}$.
Let $v \in \mathcal{Q}_{1}$ such that $N_{1}(v)=0, N_{2}(v)=0, N_{3}(v)=0, N_{4}(v)=0, N_{5}(v)=0, N_{6}(v)=0$, $N_{7}(v)=0, N_{8}(v)=0, N_{9}(v)=0$ i.e. $v\left(\widehat{a}_{i}\right)=0, i=1, \ldots, 9$. The polynomial v vanishes at two points of edges $\left(\widehat{a}_{1}, \widehat{a}_{2}\right),\left(\widehat{a}_{2}, \widehat{a}_{3}\right),\left(\widehat{a}_{5}, \widehat{a}_{7}\right),\left(\widehat{a}_{8}, \widehat{a}_{6}\right)$. Then there exists a constant c such that $v=c L_{1} L_{2} L_{5} L_{6}$. But v vanishes at \widehat{a}_{4} :

$$
0=v(0,1)=c L_{1}(0,1) L_{2}(0,1) L_{5}(0,1) L_{6}(0,1) \Longrightarrow c=0,
$$

since $L_{1}(0,1) \neq 0, L_{2}(0,1) \neq 0, L_{5}(0,1) \neq 0$ and $L_{6}(0,1) \neq 0$.
Then $v=0$ and $\widehat{\mathcal{N}}$ is a basis of $\widehat{\mathcal{P}}^{\prime}$.
Therefore $(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}})$ is a finite element.

- The nodal basis ($\left.\widehat{\phi}_{1}, \widehat{\phi}_{2}, \widehat{\phi}_{3}, \widehat{\phi}_{4}, \widehat{\phi}_{5}, \widehat{\phi}_{6}, \widehat{\phi}_{7}, \widehat{\phi}_{8}, \widehat{\phi}_{9}\right)$ is given by

$$
\left\{\begin{array} { l }
{ \widehat { \phi } _ { 1 } (\widehat { x } , \widehat { y }) = (1 - \widehat { x }) (1 - \widehat { y }) (1 - 2 \widehat { x }) (1 - 2 \widehat { y }) } \\
{ \widehat { \phi } _ { 2 } (\widehat { x } , \widehat { y }) = - \widehat { x } (1 - \widehat { y }) (1 - 2 \widehat { x }) (1 - 2 \widehat { y }) } \\
{ \widehat { \phi } _ { 3 } (\widehat { x } , \widehat { y }) = \widehat { x } \widehat { y } (1 - 2 \widehat { x }) (1 - 2 \widehat { y }) } \\
{ \widehat { \phi } _ { 4 } (\widehat { x } , \widehat { y }) = - (1 - \widehat { x }) \widehat { y } (1 - 2 \widehat { x }) (1 - 2 \widehat { y }) } \\
{ \widehat { \phi } _ { 5 } (\widehat { x } , \widehat { y }) = 4 \widehat { x } (1 - \widehat { x }) (1 - \widehat { y }) (1 - 2 \widehat { y }) } \\
{ \widehat { \phi } _ { 6 } (\widehat { x } , \widehat { y }) = - 4 \widehat { x } \widehat { y } (1 - 2 \widehat { x }) (1 - \widehat { y }) } \\
{ \widehat { \phi } _ { 7 } (\widehat { x } , \widehat { y }) = - 4 \widehat { x } \widehat { y } (1 - \widehat { x }) (1 - 2 \widehat { y }) } \\
{ \widehat { \phi } _ { 8 } (\widehat { x } , \widehat { y }) = 4 \widehat { y } (1 - \widehat { x }) (1 - 2 \widehat { x }) (1 - \widehat { y }) } \\
{ \widehat { \phi } _ { 9 } (\widehat { x } , \widehat { y }) = 1 6 \widehat { x } \widehat { y } (1 - \widehat { x }) (1 - \widehat { y }) }
\end{array} \quad \Longleftrightarrow \quad \left\{\begin{array}{l}
\widehat{\phi}_{1}=\widehat{\lambda}_{1}\left(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}+\widehat{\lambda}_{3}-\widehat{\lambda}_{4}\right), \\
\widehat{\phi}_{2}=-\widehat{\lambda}_{2}\left(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}+\widehat{\lambda}_{3}-\widehat{\lambda}_{4}\right), \\
\widehat{\phi}_{3}=\widehat{\lambda}_{3}\left(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}+\widehat{\lambda}_{3}-\widehat{\lambda}_{4}\right), \\
\widehat{\phi}_{4}=-\widehat{\lambda}_{4}\left(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}+\widehat{\lambda}_{3}-\widehat{\lambda}_{4}\right), \\
\widehat{\phi}_{5}=4 \widehat{\lambda}_{1}\left(\widehat{\lambda}_{2}-\widehat{\lambda}_{3}\right), \\
\widehat{\phi}_{6}=4 \widehat{\lambda}_{2}\left(\widehat{\lambda}_{3}-\widehat{\lambda}_{4}\right), \\
\widehat{\phi}_{7}=4 \widehat{\lambda}_{3}\left(\widehat{\lambda}_{4}-\widehat{\lambda}_{1}\right), \\
\widehat{\phi}_{8}=4 \widehat{\lambda}_{4}\left(\widehat{\lambda}_{1}-\widehat{\lambda}_{2}\right), \\
\widehat{\phi}_{9}=16 \widehat{\lambda}_{1} \widehat{\lambda}_{3}=16 \widehat{\lambda}_{2} \widehat{\lambda}_{4},
\end{array}\right.\right.
$$

where $\widehat{\lambda}_{1}, \widehat{\lambda}_{2}, \widehat{\lambda}_{3}$ and $\widehat{\lambda}_{4}$ are already introduced in (a).

Exercise 4.

(a) Given a finite element $(K, \mathcal{P}, \mathcal{N})$, let the set $\left\{\phi_{i}: 1 \leq i \leq k\right\} \cap \mathcal{P}$ be the basis dual of \mathcal{N}. If v is a function for which all $N_{i} \in \mathcal{N}, i=1, \ldots, k$, are defined, then we defined the local interpolant by

$$
\mathcal{I}_{K} v=\sum_{i=1}^{k} N_{i}(v) \phi_{i} .
$$

Prove that the local interpolant is linear.

Answer

Let v be a function for which all $N_{i} \in \mathcal{N}, i=1, \ldots, k$, are defined. Then, $v \mapsto N_{i}(v)$ is linear for all $N_{i} \in \mathcal{N}, i=1, \ldots, k$. Therefore the local interpolant \mathcal{I}_{K} is linear for such function v.
(b) Let T_{1} be the triangle whose vertices are $a_{1}=(0,0), a_{2}=(1,0)$ and $a_{3}=(0,1), T_{2}$ be the triangle whose vertices are $a_{2}=(1,0), a_{4}=(1,1)$ and $a_{3}=(0,1)$. Following finite elements are considered:
$\left(T_{1}, \mathcal{P}_{1}, \mathcal{N}_{1}\right)$ with $\mathcal{N}_{1}=\left\{N_{1}, N_{2}, N_{3}\right\}$ where $N_{i}(v)=v\left(a_{i}\right), i=1,2,3$;
$\left(T_{2}, \mathcal{P}_{1}, \mathcal{N}_{2}\right)$ with $\mathcal{N}_{2}=\left\{N_{4}, N_{5}, N_{6}\right\}$ where $N_{4}(v)=v\left(a_{2}\right), N_{5}(v)=v\left(a_{4}\right), N_{6}(v)=v\left(a_{3}\right)$.
Finally let f and g be functions in $\mathbb{R}^{2}: f(x, y)=e^{x y}$ and $g(x, y)=\sin (\pi(x+y) / 2)$.
Compute the local interpolations $\mathcal{I}_{K} f$ and $\mathcal{I}_{K} g$ where $K=T_{1}, T_{2}$.
Answer
The nodal basis of the finite element $\left(T_{1}, \mathcal{P}_{1}, \mathcal{N}_{1}\right)$ is $\left\{\phi_{1}, \phi_{2}, \phi_{3}\right\}$ defined by

$$
\phi_{1}(x, y)=1-x-y, \phi_{2}(x, y)=x, \phi_{3}(x, y)=y .
$$

Then

$$
\begin{aligned}
\mathcal{I}_{K} f & =N_{1}(f)(1-x-y)+N_{2}(f) x+N_{3}(f) y \\
& =f(0,0) \times(1-x-y)+f(1,0) \times x+f(0,1) \times y \\
& =1 \times(1-x-y)+1 \times x+1 \times y \\
& =1 \\
\mathcal{I}_{K} g & =N_{1}(g)(1-x-y)+N_{2}(g) x+N_{3}(g) y \\
& =g(0,0) \times(1-x-y)+g(1,0) \times x+g(0,1) \times y \\
& =0 \times(1-x-y)+1 \times x+1 \times y \\
& =x+y .
\end{aligned}
$$

The nodal basis of the finite element $\left(T_{2}, \mathcal{P}_{1}, \mathcal{N}_{2}\right)$ is $\left\{\phi_{4}, \phi_{5}, \phi_{6}\right\}$ defined by $\phi_{4}(x, y)=1-y, \phi_{5}(x, y)=x+y-1, \phi_{6}(x, y)=1-x$.
Then

$$
\begin{aligned}
\mathcal{I}_{K} f & =N_{4}(f)(1-y)+N_{5}(f)(x+y-1)+N_{6}(f)(1-x) \\
& =f(1,0) \times(1-y)+f(1,1) \times(x+y-1)+f(0,1) \times(1-x) \\
& =1 \times(1-y)+e \times(x+y-1)+1 \times(1-x) \\
& =(e-1)(x+y)+2-e, \\
\mathcal{I}_{K} g & =N_{4}(g)(1-y)+N_{5}(g)(x+y-1)+N_{6}(g)(1-x) \\
& =g(1,0) \times(1-y)+g(1,1) \times(x+y-1)+g(0,1) \times(1-x) \\
& =1 \times(1-y)+0 \times(x+y-1)+1 \times(1-x) \\
& =2-x-y .
\end{aligned}
$$

Exercise 5.

Let \mathcal{P}_{k}^{n} denote the space of polynomials of degree $\leq k$ in n variables.
Prove that $\operatorname{dim}\left(\mathcal{P}_{k}^{n}\right)=\binom{n+k}{k}$, where the latter is the binomial coefficient.

Answer

The dimension of the space of polynomials in n variables being exactly of degree $l \in \mathbb{N}$ is the number of combination with repetition of l objets within a set of n objects, that is $\binom{n+l-1}{l}$.
Then the dimension of the space of polynomials of degree $\leq k$ in n variables is

$$
\operatorname{dim} \mathcal{P}_{k}^{n}=\sum_{l=0}^{k}\binom{n+l-1}{l}=\binom{n+k}{k}=\frac{(n+k)!}{k!n!} \text {, thanks to Pascal's triangle } .
$$

When \mathbb{R}^{n} denotes the physical space the above formula turns into

$$
\operatorname{dim} \mathcal{P}_{k}^{n}=\binom{n+k}{k}= \begin{cases}k+1 & \text { if } n=1 \\ \frac{1}{2}(k+1)(k+2) & \text { if } n=2 \\ \frac{1}{6}(k+1)(k+2)(k+3) & \text { if } n=3\end{cases}
$$

