## Exercises - Chapter 1 - Chapter 2 (Correction)

## Exercise 1.

(a) Let $I=] 0, l[, l \in \mathbb{R}$. Show that

$$
\begin{equation*}
\exists C(l)>0,\|u\|_{C^{0}(\bar{I})} \leq C(l)\|u\|_{H^{1}(I)}, \quad \forall u \in \mathcal{D}(\bar{I}) \tag{1}
\end{equation*}
$$

Let $u \in \mathcal{D}(\bar{I})$. Let $x, y \in \bar{I}$. The fondamental theorem of analysis gives

$$
u(x)=u(y)+\int_{y}^{x} u^{\prime}(s) d s
$$

which leads to

$$
|u(x)| \leq|u(y)|+\int_{0}^{l}\left|u^{\prime}(s)\right| d s
$$

By means of Cauchy-Schwarz inequality, one gets

$$
|u(x)| \leq|u(y)|+\sqrt{l}\left(\int_{0}^{l}\left|u^{\prime}(s)\right|^{2} d s\right)^{\frac{1}{2}}
$$

Integrating the above inequality over $[0, l]$ in the $y$ variable, and applying once again the Cauchy-Schwarz inequality, give

$$
l|u(x)| \leq \sqrt{l}\left(\int_{0}^{l}|u(y)|^{2} d y\right)^{\frac{1}{2}}+l \sqrt{l}\left(\int_{0}^{l}\left|u^{\prime}(s)\right|^{2} d s\right)^{\frac{1}{2}}
$$

or equivalently

$$
|u(x)| \leq \max (1 / \sqrt{l}, \sqrt{l})\left(\|u\|_{L^{2}(I)}+\left\|u^{\prime}\right\|_{L^{2}(I)}\right)
$$

By using the the Cauchy-Schwarz inequality in $\mathbb{R}^{2}$, denoting $C(l)=\sqrt{2} \max (1 / \sqrt{l}, \sqrt{l})$, and taking the supremum on $x \in \bar{I}$, one obtains the result.

Conclude that $H^{1}(I) \subset C^{0}(\bar{I})$ in dimension 1.

Let $u \in H^{1}(I)$. Since $\mathcal{D}(I)$ is dense in $H^{1}(I)$ for the norm $\left\|\|_{H^{1}(I)}\right.$, there exists a sequence $\left(u_{n}\right)_{n \geq 0} \in \mathcal{D}(\bar{I})$ which converges to $u$ in $H^{1}(I)$ for the norm $\left\|\|_{H^{1}(I)}\right.$. Then the inequality (1) holds for each fonction $u_{n}$ :

$$
\begin{equation*}
\exists C(l)>0,\left\|u_{n}\right\|_{C^{0}(\bar{I})} \leq C(l)\left\|u_{n}\right\|_{H^{1}(I)}, \quad \forall n \geq 0 \tag{2}
\end{equation*}
$$

Since $\left(u_{n}\right)_{n \geq 0}$ is a Cauchy sequence in $H^{1}(I)$, the sequence $\left(u_{n}\right)_{n \geq 0}$ is Cauchy in $C^{0}(\bar{I})$ for the uniform norm $\left\|\|_{C^{0}(\bar{I})}\right.$ by the inequality $(2)$. The space $C^{0}(\bar{I})$ equipped with the norm $\left\|\|_{C^{0}(\bar{I})}\right.$ is complete: there exists $w \in C^{0}(\bar{I})$ such that $\left(u_{n}\right)_{n \geq 0}$ converges to $w$ in $C^{0}(\bar{I})$ for the norm $\left\|\| C^{0}(\bar{I})\right.$.

On the one hand $\left(u_{n}\right)_{n \geq 0}$ converges to $w$ in $C^{0}(\bar{I})$ for the norm $\left\|\|_{C^{0}(\bar{I})}\right.$ implies $\| u_{n} \|_{C^{0}(\bar{I})} \rightarrow$ $\|w\|_{C^{0}(\bar{I})}$, and $\left(u_{n}\right)_{n \geq 0}$ converges to $u$ in $H^{1}(I)$ for the norm $\left\|\|_{H^{1}(I)}\right.$ leads $\| u_{n} \|_{H^{1}(I)} \rightarrow$ $\|u\|_{H^{1}(I)}$.

On the other hand $\left(u_{n}\right)_{n \geq 0}$ converges to $u$ in $H^{1}(I)$ for the norm $\left\|\|_{H^{1}(I)}\right.$, leads to $u_{n} \rightarrow$ $u$ a.e.. The sequence $\left(u_{n}\right)_{n \geq 0}$ converges to $v$ in $C^{0}(\bar{I})$ for the norm $\left\|\|_{C^{0}(\bar{I})}\right.$, implies $u_{n} \rightarrow w$ in each point of $\bar{I}$. This implies $u=w$ a.e.. Then $w$ is the continuous representant of the class $u$ in $H^{1}(I)$. Finally $H^{1}(I) \subset C^{0}(\bar{I})$ in dimension 1 .
(b) Let $\Omega=B(0,1 / 2)$ be the ball of radius $1 / 2$ about the origine $(0,0)$ in $\mathbb{R}^{2}$. Let $v$ be the function defined on $\Omega$ by

$$
v(x)=|\ln \|x\||^{k}, k \in \mathbb{R} .
$$

Study the continuity of $v$ in the neighbourhood of the origine $(0,0)$, and then prove that for $k<1 / 2, v \in H^{1}(\Omega)$. Conclude.

## Continuity

$\lim _{x \rightarrow(0,0)}|\ln \|x\||=+\infty$ implies $v$ is not bounded in the neighbourhood of the origine $(0,0)$ for $k>0$. Then $v$ is continuous in $\Omega=B(0,1 / 2)$ for $k \leq 0$.

Regarding the belonging of $v$ to $H^{1}(\Omega)$
The derivative of $v$ with respect to $x_{i}, i=1,2$, is $\frac{\partial v}{\partial x_{i}}(x)=\operatorname{sign}(\ln \|x\|) k \frac{x_{i}}{\|x\|^{2}}|\ln \|x\||^{k-1}$.
By the change of variables from cartesian coordinates to polar coordinates $B(0,1 / 2) \rightarrow$ $] 0,1 / 2[\times] 0,2 \pi\left[, x=\left(x_{1}, x_{2}\right) \mapsto(r, \theta)\right.$, one gets

$$
\|v\|_{H^{1}(I)}^{2}=2 \pi \int_{0}^{1 / 2}|\ln r|^{2 k} r d r+2 \pi k^{2} \int_{0}^{1 / 2} \frac{|\ln r|^{2 k-2}}{r^{2}} r d r
$$

- $\lim _{r \rightarrow 0} r=0$ and for all $\alpha \in \mathbb{R}, \alpha \neq 0, \lim _{r \rightarrow 0} r(\ln r)^{\alpha}=0$, imply the first integral is finite for all $\underset{k \in \mathbb{R}}{ }$.
- The second integral is finite if only if $2 k-2+1<0$ i.e. $k<1 / 2$.
- Then for $k<1 / 2, v \in H^{1}(\Omega)$.

Finally $k<1 / 2, v \in H^{1}(\Omega)$ and $v$ is not continuous in $\Omega$.

## Exercise 2.

Let be the following boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f(x) \text { on }[0,1]  \tag{3}\\
u(0)=0 \\
u^{\prime}(1)=\alpha
\end{array}\right.
$$

where $f$ is a given function of $L^{2}(0,1)$ and $\alpha \in \mathbb{R}$.
(a) Let $V=\left\{v \in H^{1}(0,1), v(0)=0\right\}$. Prove that $|v|_{1, \Omega}=\left(\int_{\Omega}\left|v^{\prime}(x)\right|^{2} d x\right)^{\frac{1}{2}}$, where $\Omega=[0,1]$, is a norm on $V$ and $V$ is a Hilbert space.

- The critical point to prove that $|v|_{1, \Omega}=\left(\int_{\Omega}\left|v^{\prime}(x)\right|^{2} d x\right)^{\frac{1}{2}}$ is a norm, is to show that $|v|_{1, \Omega}=0$ implies $v=0$ in $H^{1}(0,1)$.
Let $v$ to be such a function. Then $v^{\prime}=0$ a.e. which implies $v=$ constant a.e.. In dimension 1 , $v$ has a continuous representant, let call it $w$. Since $v(0)=0$, one has $w(0)=0=$ constant and $w=0$. Therefore $v=w=0$ a.e..
- The norm $|v|_{1, \Omega}$ is equivalent to the norm $\|v\|_{H^{1}(0,1)}$ on $H^{1}(0,1)$.

$$
|v|_{1, \Omega} \leq\left(|v|_{1, \Omega}^{2}+|v|_{L^{2}(0,1)}^{2}\right)^{\frac{1}{2}}=\|v\|_{H^{1}(0,1)}
$$

The converse inequality is obtained as follows. Let $v \in V$, then $v \in H^{1}(0,1)$ in dimension 1 and v owns a continuous representant, let call it $v$. Then one has

$$
v(x)=v(0)+\int_{0}^{x} v^{\prime}(y) d y, \quad \forall x \in[0,1],
$$

which implies

$$
|v(x)| \leq x^{\frac{1}{2}}\left(\int_{0}^{1}\left|v^{\prime}(y)\right|^{2} d y\right)^{\frac{1}{2}}, \forall x \in[0,1]
$$

Taking the square of the above inequality and then integrating in $x$ over $(0,1)$, one gets

$$
\int_{0}^{1}|v(x)|^{2} d x \leq \frac{1}{2} \int_{0}^{1}\left|v^{\prime}(y)\right|^{2} d y
$$

which leads to

$$
\begin{equation*}
\|v\|_{H^{1}(0,1)}^{2} \leq \frac{3}{2}|v|_{1, \Omega}^{2} \tag{4}
\end{equation*}
$$

- Let $\gamma$ be the mapping $\gamma: H^{1}(0,1) \rightarrow \mathbb{R}, v \mapsto v(0)$. Since $H^{1}(0,1) \subset C^{0}([0,1])$ in dimension 1 , the mapping $\gamma$ is well-defined. The mapping $\gamma$ is linear and

$$
|\gamma(v)|=|v(0)| \leq\|v\|_{C^{0}([0,1])} \leq C\|v\|_{H^{1}(0,1)},
$$

where $C>0$. This shows that $\gamma$ is continuous. Then $V=\operatorname{Ker} \gamma$ is a closed subset of the Hilbert $H^{1}(0,1)$. Therefore $V$ is a Hilbert space.

## (b) Give the variational problem and show that it has a unique solution.

The variational problem
Let $v \in \mathcal{D}([0,1])$. Multiplying the $\operatorname{PDE}$ (3) by $v$ and integrating over $[0,1]$, one gets

$$
\int_{0}^{1}-u^{\prime \prime}(x) v(x) d x=\int_{0}^{1} f(x) v(x) d x
$$

Integrating by part the left-hand side, one gets

$$
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x-\left(u^{\prime}(1) v(1)-u^{\prime}(0) v(0)\right)=\int_{0}^{1} f(x) v(x) d x .
$$

By taking $v \in V$ et using $u^{\prime}(1)=\alpha$, one obtains

$$
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x=\alpha v(1)+\int_{0}^{1} f(x) v(x) d x .
$$

Let $a: V \times V \rightarrow \mathbb{R},(u, v) \mapsto \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x, L: V \rightarrow \mathbb{R}, v \mapsto \alpha v(1)+\int_{0}^{1} f(x) v(x) d x$. The variational problem is the following:

$$
\begin{align*}
& \text { Find } u \in V \text { solution of } \\
& \qquad \forall v \in V, a(u, v)=L(v) . \tag{5}
\end{align*}
$$

The solution of the variational problem

- The space $V$ is a Hilbert space.
- The mapping $a$ is a bilinear symmetric, continuous, coercive form on $V$ :

$$
\begin{aligned}
|a(u, v)| & \leq|u|_{1, \Omega}|v|_{1, \Omega} \quad \forall u, v \in V \\
|a(v, v)| & =|v|_{1, \Omega}^{2} \forall v \in V
\end{aligned}
$$

- The mapping $L$ is a linear continuous form on $V$ :

$$
\begin{aligned}
|L(v)| & \leq|\alpha|\|v(1) \mid+\| f\left\|_{L^{2}(0,1)}\right\| v \|_{L^{2}(0,1)} \\
& \leq|\alpha|\|v\|_{C^{0}([0,1])}+\|f\|_{L^{2}(0,1)}\|v\|_{H^{1}(0,1)} \\
& \leq|\alpha| C\|v\|_{H^{1}(0,1)}+\|f\|_{L^{2}(0,1)}\|v\|_{H^{1}(0,1)} \\
& \leq \max \left(|\alpha| C,\|f\|_{L^{2}(0,1)}\right)\|v\|_{H^{1}(0,1)} \\
& \leq \beta|v|_{1, \Omega}, \quad \forall v \in V
\end{aligned}
$$

with $\beta=\sqrt{\frac{3}{2}} \max \left(|\alpha| C,\|f\|_{L^{2}(0,1)}\right)$.
Finally thanks to Lax-Milgram theorem, there exists a unique solution $u$ for the above variational problem.

## (c) Recover formally the initial problem.

Recovering the PDE
Let $u$ be the solution of the variational problem (5).
Let one takes $v \in \mathcal{D}(] 0,1[) \subset V$ in the variational problem (5).

$$
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x=\alpha v(1)+\int_{0}^{1} f(x) v(x) d x
$$

Since $v \in \mathcal{D}(] 0,1[)$, one has $v(1)=0$ and

$$
\begin{equation*}
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{1} f(x) v(x) d x \tag{6}
\end{equation*}
$$

One has also $f \in L^{2}(0,1) \subset \mathcal{D}^{\prime}(] 0,1[), u^{\prime} \in L^{2}(0,1) \subset \mathcal{D}^{\prime}(] 0,1[)$. Then (6) rewrites as

$$
\begin{aligned}
& \quad\left\langle u^{\prime}, v^{\prime}\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(] 0,1[)}=\langle f, v\rangle_{\mathcal{D}^{\prime}, \mathcal{D}(] 0,1[)}, \\
& \text { or }\left\langle-u^{\prime \prime}, v\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(] 0,1[)}=\langle f, v\rangle_{\mathcal{D}^{\prime} \mathcal{D}(] 0,1[)}, \\
& \text { or }\left\langle-u^{\prime \prime}-f, v\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(] 0,1[)}=0
\end{aligned}
$$

Then the PDE is

$$
-u^{\prime \prime}-f=0 \text { in } \mathcal{D}^{\prime}(] 0,1[)
$$

Since $f \in L^{2}(0,1)$, the above PDE turns into

$$
\begin{equation*}
-u^{\prime \prime}=f \text { in } L^{2}(0,1) \text { a.e. } \tag{7}
\end{equation*}
$$

## Recovering the boundary conditions

Let one takes $v \in V$, multiplying (7) by $v$ and integrating one gets

$$
\int_{0}^{1}-u^{\prime \prime}(x) v^{\prime}(x) d x=\int_{0}^{1} f(x) v(x) d x
$$

Then integrating by part and using $v(0)=0$, one obtains

$$
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x-u^{\prime}(1) v(1)=\int_{0}^{1} f(x) v(x) d x
$$

The comparison of the above equation with the variational problem (5) gives $u^{\prime}(1)=\alpha$. Obviously one has $u(0)=0$ since $u \in V$.
Therefore the boundary value problem is

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f \text { a.e. on }[0,1]  \tag{8}\\
u(0)=0 \\
u^{\prime}(1)=\alpha
\end{array}\right.
$$

where $f$ is a given function of $L^{2}(0,1)$ and $\alpha \in \mathbb{R}$.

## Exercise 3.

(a) Give the variational formulation of the boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)+u(x)=f(x) \text { on }[0,1] \\
u^{\prime}(0)=0 \\
u^{\prime}(1)=0
\end{array}\right.
$$

where $f$ is a given function of $L^{2}(0,1)$.

Let $V=H^{1}(0,1)$.
Let $a: V \times V \rightarrow \mathbb{R}, \quad(u, v) \mapsto \int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x+\int_{0}^{1} u(x) v(x) d x, L: V \rightarrow \mathbb{R}, v \mapsto$ $\int_{0}^{1} f(x) v(x) d x$.
The variational problem of the PDE (3) is the following:
Find $u \in V$ solution of

$$
\begin{equation*}
\forall v \in V, a(u, v)=L(v) \tag{9}
\end{equation*}
$$

## (b) Show that the variational problem has a unique solution.

The solution of the variational problem

- The space $V=H^{1}(0,1)$ is a Hilbert space.
- The mapping $a$ is a bilinear symmetric, continuous, coercive form on $V$ :

$$
|a(u, v)| \leq\left\|u^{\prime}\right\|_{L^{2}(0,1)}\left\|v^{\prime}\right\|_{L^{2}(0,1)}+\|u\|_{L^{2}(0,1)}\|v\|_{L^{2}(0,1)}, \text { by Cauchy-Schwarz }
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { inequality in } L^{2}(0,1) \\
\\
\leq\left(\|u\|_{L^{2}(0,1)}^{2}+\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2}\right)^{1 / 2}\left(\|u\|_{L^{2}(0,1)}^{2}+\left\|u^{\prime}\right\|_{L^{2}(0,1)}^{2}\right)^{1 / 2}, \\
\\
\\
=\|u\|_{H^{1}(0,1)}\|v\|_{H^{1}(0,1)} \quad \forall u, v \in V, \\
\text { by Cauchy-Schwarz } \\
|a(v, v)|
\end{array}=\|v\|_{H^{1}(0,1)}^{2} \quad \forall v \in V
\end{aligned}
$$

- The mapping $L$ is a linear continuous form on $V$ :

$$
|L(v)| \leq\|f\|_{L^{2}(0,1)}\|v\|_{L^{2}(0,1)} \leq\|f\|_{L^{2}(0,1)}\|v\|_{H^{1}(0,1)}, \quad \forall v \in V .
$$

By Lax-Milgram theorem, there exists a unique solution $u$ for the above variational problem.

## (c) Recover formally the initial problem.

## Recovering the PDE

Let $u$ be the solution of the variational problem (9).
Let one takes $v \in \mathcal{D}(] 0,1[) \subset V$ in the variational problem (9).
Since $f \in L^{2}(0,1) \subset \mathcal{D}^{\prime}(] 0,1[), u^{\prime} \in L^{2}(0,1) \subset \mathcal{D}^{\prime}(] 0,1[)$, the variational problem (9) turns to

$$
\begin{aligned}
& \left\langle u^{\prime}, v^{\prime}\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(0,1[)}+\langle u, v\rangle_{\mathcal{D}^{\prime} \mathcal{D}(00,1[)}=\langle f, v\rangle_{\mathcal{D}^{\prime} \mathcal{D}(00,1[)}, \\
\text { or } & \left\langle-u^{\prime \prime}, v\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(00,1[)}+\langle u, v\rangle_{\mathcal{D}^{\prime} \mathcal{D}(0,1[)}=\langle f, v\rangle_{\mathcal{D}^{\prime} \mathcal{D}(0,1[)}, \\
\text { or } & \left\langle-u^{\prime \prime}+u-f, v\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(00,1[)}=0 .
\end{aligned}
$$

Then the PDE is

$$
-u^{\prime \prime}+u-f=0 \text { in } \mathcal{D}^{\prime}(] 0,1[) .
$$

Since $f \in L^{2}(0,1)$ and $u \in L^{2}(0,1)$, one has $u^{\prime \prime} \in L^{2}(0,1)$ and the above PDE turns into

$$
\begin{equation*}
-u^{\prime \prime}+u=f \text { in } L^{2}(0,1) \text { a.e.. } \tag{10}
\end{equation*}
$$

Recovering the boundary conditions
Let one takes $v \in V=H^{1}(0,1)$, multiplying (9) by $v$ and integrating one gets

$$
\int_{0}^{1}-u^{\prime \prime}(x) v^{\prime}(x) d x=\int_{0}^{1} f(x) v(x) d x .
$$

Then integrating by part gives

$$
\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x-\left(u^{\prime}(1) v(1)-u^{\prime}(0) v(0)\right)=\int_{0}^{1} f(x) v(x) d x .
$$

- Then the comparison of the above equation with the variational problem (9) gives $u^{\prime}(0)=0$ when taking $v \in V=H^{1}(0,1)$ with $v(1)=0$ and $v(0) \neq 0$.
- Then when taking $v \in V=H^{1}(0,1)$ with $v(0) \neq 0$, one gets $u^{\prime}(0)=0$.

Therefore the boundary value problem is

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=f \text { a.e. on }[0,1],  \tag{11}\\
u^{\prime}(0)=0, \\
u^{\prime}(1)=0,
\end{array}\right.
$$

where $f$ is a given function of $L^{2}(0,1)$.

## Exercise 4.

Let $\Omega$ be a bounded subset of $\mathbb{R}^{n}$ where $n \geq 1$, with regular boundary $\partial \Omega$. Let be the following problem:

Find $u \in H_{0}^{1}(\Omega)$ solution of

$$
\begin{equation*}
\forall v \in H_{0}^{1}(\Omega), \int_{\Omega} \boldsymbol{\nabla} u \cdot \nabla v d x=\int_{\Omega} f v d x \tag{12}
\end{equation*}
$$

where $f$ is a given function of $L^{2}(\Omega)$.

## Show that this problem has a unique solution and give the associated initial boundary value problem.

The solution of the variational problem
Let $a: H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega) \rightarrow \mathbb{R},(u, v) \mapsto \int_{\Omega} \nabla u \cdot \nabla v d x, L: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}, v \mapsto \int_{\Omega} f v d x$.

- The space $V=H_{0}^{1}(\Omega)$ is a Hilbert space.

The trace mapping $\gamma_{0}: H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega),\left.u \mapsto u\right|_{\partial \Omega}$ is linear continuous. Its kernel $\operatorname{Ker} \gamma_{0}=$ $H_{0}^{1}(\Omega)$ is a closed subset of the Hilbert space $H^{1}(\Omega)$. Therefore $H_{0}^{1}(\Omega)$ is a Hilbert space.

Thanks to Poincaré theorem, the mapping $u \mapsto|u|_{1, \Omega}=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}$ is a norm equivalent to the norm $\left\|\|_{H^{1}(\Omega)}\right.$ on $H_{0}^{1}(\Omega)$.

- The mapping $a$ is a bilinear symmetric, continuous, coercive form on $H_{0}^{1}(\Omega)$ :

$$
\begin{aligned}
& |a(u, v)| \leq\|\nabla u\|_{L^{2}(\Omega)}\|\nabla v\|_{L^{2}(\Omega)}=|u|_{1, \Omega}|u|_{1, \Omega}, \quad \forall u, v \in H_{0}^{1}(\Omega), \\
& a(v, v)=\|v\|_{1, \Omega}^{2} \quad \forall v \in H_{0}^{1}(\Omega) .
\end{aligned}
$$

- The mapping $L$ is a linear continuous form on $H_{0}^{1}(\Omega)$ :

$$
|L(v)| \leq\|f\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)} \leq\|f\|_{L^{2}(\Omega)}\|v\|_{H^{1}(\Omega)} \leq C\|f\|_{L^{2}(\Omega)}|v|_{1, \Omega}, \quad \forall v \in H_{0}^{1}(\Omega) .
$$

By Lax-Milgram theorem, there exists a unique solution $u$ for the above variational problem.
Recovering the PDE
Let $u$ be the solution of the variational problem (12).
Let one takes $v \in \mathcal{D}(\Omega) \subset H_{0}^{1}(\Omega)$ in the variational problem (12).
Since $f \in L^{2}(\Omega) \subset \mathcal{D}^{\prime}(\Omega), u^{\prime} \in L^{2}(\Omega) \subset \mathcal{D}^{\prime}(\Omega)$, the variational problem (12) turns to

$$
\begin{aligned}
&\left\langle u^{\prime}, v^{\prime}\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(\Omega)}=\langle f, v\rangle_{\mathcal{D}^{\prime} \mathcal{D}(\Omega)}, \\
& \text { or }\left\langle-u^{\prime \prime}, v\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(\Omega)}=\langle f, v\rangle_{\mathcal{D}^{\prime} \mathcal{D}(\Omega)}, \\
& \text { or }\left\langle-u^{\prime \prime}-f, v\right\rangle_{\mathcal{D}^{\prime} \mathcal{D}(\Omega)}=0 .
\end{aligned}
$$

Then the PDE is

$$
-u^{\prime \prime}-f=0 \text { in } \mathcal{D}^{\prime}(\Omega) .
$$

Since $f \in L^{2}(\Omega)$ and $u \in L^{2}(\Omega)$, one has $u^{\prime \prime} \in L^{2}(\Omega)$ and the above PDE turns into

$$
\begin{equation*}
-u^{\prime \prime}=f \text { in } L^{2}(\Omega) \text { a.e.. } \tag{13}
\end{equation*}
$$

Recovering the boundary conditions
The solution of the the variational problem (12) $u \in H_{0}^{1}(\Omega)$, then $u=0$ on $\partial \Omega$.
Therefore the boundary value problem is

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f \text { a.e. in } \Omega,  \tag{14}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $f$ is a given function of $L^{2}(\Omega)$.

