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Abstract

Matrix models are quantum theories whose correlations are basis independent averages

over the entries of several N ×N matrices. They are toy-models for non-abelian gauge

theories. In the ‘classical’ limit as N becomes large, various algebraic structures may

be exploited to understand these models. For instance, the Schwinger-Dyson operators

are invariant derivations of the shuffle-deconcatenation Hopf algebra. This suggests an

approximation method based on deformation theory. On the other hand, solving the

Schwinger-Dyson equations involve computing the Legendre transform of a non-trivial

one cocycle of the automorphism group of the free algebra. This leads to a method of

variational approximations.

I will describe work which was done in part in collaboration with S. G. Rajeev, L. Akant

and A. Agarwal.
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Significance of large-N Yang-Mills theory

• QCD describes physics of quarks and gluons to form hadrons, so we must make every

effort to solve it.

• The limit as the number of colours N →∞ is a ‘classical’ limit different from h̄→ 0

and a promising approach.

• Yang-Mills theory is as central to physics today as Newtonian mechanics was in the

18th & 19th centuries.

• Newtonian mechanics↔ ordinary calculus as Yang-Mills theory↔ calculus of infinite

dimensional spaces.

• A detailed theory of hadronic structure will tell us the right way to look at quantum

field theory.
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Yang-Mills Theory

• Dynamical variable is gauge/gluon field, connection 1-form [Aµ(x)]abdx
µ in principal

SU(N) bundle over space time M . a, b = 1, · · ·N , colours, N = 3 in nature.

• Think of Aµ(x) as an N ×N hermitian matrix at each point x.

• A(x) is not a physical observable. Observables must be gauge invariant

A(x)→ g(x)A(x)g−1(x) + idg g−1; where g(x) ∈ SU(N)

• Example of a gauge invariant observable is Wilson loop, trace of parallel transport

around closed curve γ on space time. W (γ) is a typical function on Loop(M)

Holonomy around γ : W (γ) =
1

N
tr Pei

∮
γ Aµ(x)dx

µ

dt dt

Square of Curvature tr FµνF
µν(x), where F = dA + A ∧ A
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Path ordered exponential: Younger ones to the right

• The path ordered exponential for a matrix A(t)

U(t) = Pe
∫ t
0 A(t′)dt′

is defined in one of several equivalent ways.

• As the infinite series of ‘Chen’ iterated integrals

U(t) = 1 +
∫ t
0
dt′A(t′) +

∫ t
0
dt1

∫ t1
0
dt2A(t1)A(t2) +

∫ t
0
dt1

∫ t1
0
dt2

∫ t2
0
dt3A(t1)A(t2)A(t3) + · · ·

• As the unique solution of the ODE with initial condition U(0) = 1

dU

dt
= A(t)U(t)

• As the limit of the product (ε = t/N, tn = t− nε)

U(t) = lim
N→∞

eεA(t0)eεA(t1) · · · eεA(tN )
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(Euclidean) Quantum Yang-Mills Theory

• Calculate average values of gauge invariant observables over all Aµ(x) with

respect to a weight specified by the Yang-Mills action

SYM =
1

4g2
tr

∫
d4xFµνF

µν and 〈W (γ)〉 =
∫
DA e−

1
h̄ S W (γ)

∫
DA e−

1
h̄ S

• Perturbation theory around h̄→ 0 where flat connections or instantons dominate is a

successful approximation at short distances due to asymptotic freedom.

• Loop expansion in h̄ or αs is not adequate at moderate and large distances to find

spectrum of particles, structure of bound states, confinement of quarks, mass gap, mass

of the proton etc. Other approaches, such as large-N limit needed, but the problem is

very hard and we are still far from experimentally relevant predictions.
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Large-N (multi-color) limit of Yang-Mills theory

• ’t Hooft: 1/N expansion holding h̄, g2N fixed: non-perturbative approximation.

• As h̄→ 0 all variables, quarks, gluons stop fluctuating.

• As N → ∞, only gauge-invariants stop fluctuating, behave classically due

to factorization:

〈W (γ)W (γ′)〉 = 〈W (γ)〉 〈W (γ′)〉 +O(
1

N 2
)

• Many indications that large-N limit should be a good approximation. Phenomenology

of planar diagrams; numerical evidence from lattice gauge theory.

• Need to solve large-N Yang-Mills before doing a 1/N expansion.
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Difficulties are encountered in every viewpoint

1. Sum infinite classes of Feynman diagrams of planar topology

2. Solve Makeenko-Migdal equations for Wilson Loops.

3. Solve factorized Schwinger-Dyson equations for gluon correlations

Goals for this talk

• Find (approximation) methods to solve large-N limit of theories with

several N ×N matrix degrees of freedom.

• Identify mathematical structures of the equations which may lead to a

better understanding.

• Postpone questions of renormalization.
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Matrix models : Simplified versions of Yang-Mills theory

• Matrix field theories arise from dimensional reduction of gauge-fixed YM3+1 to 1 + 1

dimensions: a theory of adjoint scalars (transverse polarization states of the gluon).

• To avoid divergences and to focus on matrix nature of fields, regularize space-time to

have Λ points.

• Consider matrix models with Λ hermitian N × N matrices [Ai]
a
b → gluon field at

‘position’ i = 1, 2, · · · ,Λ.

• Gauge invariance simplifies to invariance of action and observables under global adjoint

action of U(N): Ai 7→ UAiU
†.
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Examples of Matrix Models

• Action → polynomial tr S(A) = tr SIAI , SI → cyclic ‘coupling tensors’. eg.

S(A) = tr [SijAiAj + SijkAiAjAk + SijklAiAjAkAl]

• I = i1 · · · in → multi-indices, repeated indices summed. AI = Ai1Ai2Ai3 · · ·Ain.

• Interesting examples: Zero-momentum limits of field theories

SGauss =
1

2
tr C ijAiAj; SCS =

2iκ

3
tr C ijkAi[Aj, Ak];

SYM = − 1

4α
tr [Ai, Aj][Ak, Al]g

ikgjl.

• Gauge-fixed Yang-Mills action is a sort of grand limiting case

S =
∫
d4x tr {1

2
∂µAν(∂

µAν − ∂νAµ)− ig∂µAν[A
µ, Aν]

−g
2

4
[Aµ, Aν][A

µ, Aν] +
1

2ξ
(∂µAµ)2 + ∂µc̄ ∂

µc− ig∂µc̄ [Aµ, c]}.
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U(N) Invariants and Gluon Correlations

• Partition function → Z =
∫
dAe−N tr S(A)

• Observables → U(N) invariants

Φk1···kn =
1

N
tr Ak1 · · ·Akn

• Aim: Calculate correlations: expectation values of products of invariants

〈ΦK1 · · ·ΦKn〉 =
1

Z

∫
dAe−N tr S(A) ΦK1 · · ·ΦKn

• N →∞ ⇒ invariants don’t fluctuate (‘classical’ limit though h̄ = 1): factorization

〈ΦK1 · · ·ΦKn〉 = 〈ΦK1〉 · · · 〈ΦKn〉 +O(
1

N 2
)

• In N →∞ limit restrict to single trace correlations GI = limN→∞〈ΦI〉 = 〈 1
N tr AI〉
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Rough summary of results: Algebra

• Generator of correlationsG(ξ) = GIξ
I live in the shuffle-deconcatenation Hopf algebra.

• Identified a finitely generated analogue of the group of loops on space time, the

spectrum GΛ of this Hopf algebra. Lie algebra of GΛ is the FLAΛ

• G(ξ) is a function on GΛ. It satisfies quadratic equations in convolution

product on the group: factorized SD equations S i G(ξ) = G(ξ) ξi G(ξ).

• SD operators S i of Yang-Mills, Chern-Simons and Gaussian models are right-invariant

vector fields on GΛ, i.e., invariant derivations of the Hopf algebra.

• fSDE can be transformed into linear equations by replacing convolution (concatenation)

by shuffle. To approximately solve: Expand concatenation as a deformation series around

shuffle.
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Rough summary of results: Probability and algebra

• Probabilistic interpretation of the configuration space of correlations: it is the space

of non-commutative probability distributions.

• Produced a variational principle which implies the factorized Schwinger-Dyson equa-

tions: non-trivial due to a cohomological obstruction.

• Avoided cohomological obstruction by expressing configuration space as a coset space

of automorphism group of free associative algebra in Λ generators.

• Variational principle: Extremize entropy of operator-valued random variables while

holding correlations conjugate to coupling tensors fixed ⇒ variational approximations.

• Showed that the entropy is a non-trivial 1-cocycle of the Automorphism group of the

free associative algebra.
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Configuration space of large-N ‘classical’ limit

• GI = limN→∞〈 tr
NAI〉 not the moments of any probability distribution ρ(x) on RΛ,

since they are not symmetric tensors as A1, · · · , AΛ don’t commute

• {GI} = PΛ = Space of Non-commutative Probability Distributions.

• As N → ∞, can ignore relations between the traces of various products of matrices

and treat GI as almost independent variables.

• Conditions on GI (coordinates on configuration space PΛ)

Gφ = 〈 tr
N

1〉 = 1 NORMALIZED

Gi1i2···ik = Gi2i3···iki1 CYCLIC

A†i = Ai ⇒ G∗i1i2···in = Ginin−1···i2i1 HERMITIAN

f (A) = f IAI polynomial⇒ 〈 tr
N
f †(A)f (A)〉 ≥ 0 ⇒ GIJf

Ī∗fJ ≥ 0 POSITIVE
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Matrix Model Loop equations for Gluon Correlations

• At N =∞, GI satisfy factorized Schwinger-Dyson or Loop equations

SJ1iJ2 GJ1IJ2 = δI1iI2I GI1 GI2 for all words I and letters i

• Aim: Solve the factorized Schwinger-Dyson equations.

• Analogue of Makeenko-Migdal eqn. for Wilson loops of large-N Yang-Mills theory

δxµ
δ

δσµν(x)
W (C) = λ

∮
C dyνδ

(4)(x− y)W (Cyx)W (Cxy) ∀ curves C, points x

• “word I ↔ curve C” and “letter i↔ point x”

• Correlation tensors give an algebraic way of doing calculus on Loop(M).

• For a single matrix Gk = 〈 tr
NA

k〉, the loop equations are

m∑
l=1

l SlGk+l =
∑

r+s=k
r,s≥0

GrGs, for k = −1, 0, 1, 2, · · ·
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Obtaining the factorized Schwinger Dyson equations

• Matrix integrals are invariant under infinitesimal non-linear changes of integration

variable encoded in the vector fields Lv (infinitesimal automorphisms of free algebra)

Lv : Ai 7→ Ai + vIiAI leaves Z =
∫
dA e−N tr S(A) unchanged.

• Change in action S and change in measure (divergence of vector field)

e−N tr SJAJ 7→ e−N tr SJAJ(1 − N 2 vIi S
J1iJ2 ΦJ1IJ2) +O(v2),

det (
∂[A′i]

a
b

∂[Aj]cd
) = 1 + N 2 vIi δ

I1iI2
I ΦI1 ΦI2 +O(v2)

• Invariance of Z ⇒ vIi S
J1iJ2〈ΦJ1IJ2〉 = vIi δ

I1iI2
I 〈ΦI1ΦI2〉.

• Using factorization at large-N , the Loop equations are quadratic in GI

SJ1iJ2 GJ1IJ2 = δI1iI2I GI1 GI2 = ηiI.

• LHS, change in action, linear in GI . RHS, change in measure is quadratic, ‘anomaly’.
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Structure of factorized Schwinger-Dyson equations (fSDE)

• Generating series of correlations G(ξ) = GIξ
I in non-comuting generators ξi.

• Then fSDE SJ1iJ2GJ1IJ2 = δI1iI2I GI1GI2 become S i G(ξ) = G(ξ) ξi G(ξ) where

Schwinger− Dyson operators S i =
∑
n≥0

(n + 1)Sij1···jnDjn · · ·Dj1

• Left annihilation Dj defined as Djξ
i1···in = δi1j ξ

i2···in or equivalently, [DjG]I = GjI .

• Juxtaposition G(ξ)ξiG(ξ) denotes concatenation (ξI1ξiξI2 = ξI1iI2)

• But left annihilation Dj doesn’t satisfy the Leibniz rule with respect to concatenation

• So fSDE are not differential equations in the usual sense.

• But Dj satisfies Leibniz rule with respect to shuffle product of correlations!
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Hopf algebra of functions on Loop(M)

• Wilson loops W (γ) = tr P exp
∮
Aµ(γ(t))γ̇µ(t)dt are functions on Loop(M).

• Based oriented loops γ on M (upto backtracking) form a non-abelian group.

• Successive traversal γ1γ2 is product and reversed orientation γ̄ is inverse.

• Functions on Loop(M) form a commutative but non-cocommutative Hopf algebra

• Point-wise product (W1W2)(γ) = W1(γ)W2(γ); Coproduct (∆W )(γ1, γ2) = W (γ1γ2).

• Antipode (SW )(γ) = W (γ̄) encodes inverse.

• Makeenko-Migdal equations δxµ
δ

δσµν(x)W (C) = λ
∮
C dyνδ

(4)(x− y)W (Cyx)W (Cxy) are

equations for a function on this group.
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Shuffle-deconcatenation Hopf algebra of Gluon correlations

• Is there an analogue of the group of loops for a matrix model? Can the correlations

GI be regarded as functions on this group? Yes! But the group is not obvious.

• But Hopf algebra of correlations G(ξ) = GIξ
I is identified by rewriting

〈G(γ)〉 =
∞∑
m=0

im
∫
0≤sm≤···≤s1≤1Gν1···νm(x(s1), · · · , x(sm))

dxν1

ds1
· · · dx

νm

dsm
ds1 · · · dsm

• As a vector space it is C〈〈ξ1, · · · , ξΛ〉〉, linear span of words in alphabet ξ1, · · · , ξΛ

• Pointwise product 〈(FG)(γ)〉 = 〈F (γ)〉〈G(γ)〉 ⇒ shuffle product of correlations

(F ◦G)(ξ) =
∑
I

(F ◦G)Iξ
I where (F ◦G)I =

∑
I=JtK

FJGK.

• Sum over all complementary order-preserving sub-strings J and K of I . Eg.

(F ◦G)ijk = F∅Gijk + FiGjk + FjGik + FkGij + FijGk + FikGj + FjkGi + FijkG∅.
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Hopf algebra of Gluon correlations

• Coproduct on Loop space ⇒ deconcatenation coproduct on correlations

∆ξI = δIJKξ
J ⊗ ξK extended linearly to ∆F (ξ) =

∑
J,K

FJKξ
J ⊗ ξK

• Unit is G(ξ) = 1 and co-unit picks out constant term ε(G(ξ)) = G∅

• Antipode reverses the indices in a correlation upto a sign S(ξi1i2i3) = −ξi3i2i1

S(ξI) = (−1)|I|ξ Ī, or [S(G)]I = (−1)|I|GĪ

• ∆, S are homomorphisms of shuffle, and sh(S ⊗ 1)∆ = sh(1⊗ S)∆ = 1ε

• (sh,∆, 1, ε, S) → commutative, non-cocommutative Hopf algebra. Must be algebra

of functions on some non-abelian group GΛ, a matrix model analogue of Loop(M). But

it is not any group built from U(N) or the free group on Λ generators.
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GΛ: Matrix model analogue of group Loop(M)

• Interesting since the fSDE would be equations for a function G(ξ) on GΛ.

• GΛ is group of characters (spectrum or dual) of the Hopf algebra. Characters are

linear homomorphisms from shuffle algebra to R or C

χ(F ◦G) = χ(F )χ(G) and for a, b ∈ C, χ(aF + bG) = aχ(F ) + bχ(G).

• Character χ is determined by χI = χ(ξI) which are assembled as a series χ = χIξI

• Characters form a group. Multiplication is concatenation (χψ)I = δIJKχ
JψK, coming

from co-product, unit element is the co-unit εI = δI∅, and inverse is (χ−1)I = (−1)|I|χĪ .

• The correlations G(ξ) = GIξ
I are functions on GΛ, value at χ is G(χ) = GIχ

I
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Group of Characters GΛ

• But not every series χIξI is a character, rather it must be a homomorphism of shuffle

∑
ItJ=K

χK = χIχJ for all I, J.

• These conditions are called shuffle relations elsewhere (paper of Rimhak Ree).

χ∅ = 1, χij + χji = χiχj, χijk + χjik + χjki = χiχjk,

χijkl + χikjl + χiklj + χkijl + χkilj + χklij = χijχkl,

χijkl + χjikl + χjkil + χjkli = χiχjkl, e.t.c.

• What are the characters of Shuffle-deconcatenation Hopf algebra?

• For F ∈ Sh(M) = T (Λ1(M)) a loop γ(t) defines a character γ(F ) =
∫
γ F . Eg. if

F = α⊗ β for 1-forms α and β

γ(F ) =
∫ 1
0 dt1

∫ t1
0 dt2 αi(γ(t1)) βj(γ(t2)) γ̇i(t1) γ̇j(t2).
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Characters of Shuffle-deconcatenation Hopf Algebra

• If Λ = 1, characters form a 1-parameter abelian group G1 = {χ(ξ) = eχ1ξ|χ1 ∈ R}

More generally, eχ
1ξi1 eχ

2ξi2 · · · eχnξin are characters

• If Λ > 1, the free product G1 ∗G1 ∗ · · · ∗G1 is a proper subgroup of the group of

characters GΛ. It is a finitely generated analogue of the free group generated by the

based loops on space time.

• This free product is physically not adequate, doesn’t behave as a Lie group.

• Results of Ree and Friedrichs imply that GΛ is the exponential of the Free Lie algebra.

A Lie element is a linear combination of iterated commutators of ξi

χ(ξ) = eLie element = exp{C iξi + C ijk[ξi, [ξj, ξk]] + C ijkl[[ξi, ξj], [ξk, ξl]] + · · ·}

• logχ is a Lie element ⇒ Free Lie algebra is the Lie algebra of GΛ.
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Functions and (invariant) Vector fields on GΛ

• Functions on GΛ: G(ξ) ∈ ShΛ, evaluated at character χ is G(χ) = GIχ
I

• Vector fields on GΛ are derivations of the Shuffle algebra (satisfy Leibniz rule)

• Left annihilation [DjG]I = GjI is a derivation: Di(F ◦G) = DiF ◦G + F ◦DiG

• Iterated commutators of Di span FLAΛ, basis labelled by Lyndon words D(L)

• General vector field on GΛ with non-constant coefficients is V = V L(ξ)D(L)

• Moreover Di are right invariant derivations of the Hopf algebra

∆DiG = (Di ⊗ 1)∆G = GiJKξ
J ⊗ ξK for all G(ξ)

• So linear combinations of iterated commutators of Di with constant coefficients

V L
∅ D(L) are the right-invariant vector fields on GΛ (same as Lie algebra of GΛ).
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fSDE as equations for a function on GΛ

• Matrix model with action S(A) = tr SIAI has fSDE S i G(ξ) = G(ξ) ξi G(ξ),

• fSDE are quadratic equations for a function on GΛ, the generator of correlations

G(ξ) = GIξ
I .

• Concatenation appearing on RHS of fSDE G(ξ) ξi G(ξ) is the convolution product in

Hopf algebra dual to sh-deconc, i.e. conc-desh, which is the group algebra of GΛ

• Given a group, there are two dual Hopf algebras, the commutative algebra of functions

and the non-commutative group algebra with convolution product of functions.

• The SD operators S i = ∑
n≥0(n+ 1)Sij1···jnDjn · · ·Dj1 are expressed in terms of left

annihilation [DjG]I = GjI .
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fSDE as equations for a function on GΛ

• Generically S i = ∑
n≥0(n + 1)Sij1···jnDjn · · ·Dj1 not a Lie element.

• But for many physically interesting models,

SG =
1

2
tr C ijAiAj, SCS =

2
√
−1κ

3
tr εijkAiAjAk, SYM = gikgjl[Ai, Aj][Ak, Al].

• Schwnger-Dyson operators are indeed Lie elements, so focus on them

S iG = C ijDj, S iCS =
√
−1κεijk[Dk, Dj], S iY M = 4gikgjl[Dj, [Dk, Dl]].

• This is true also for the full continuum Yang-Mills theory in 3 + 1 dimensions

Sµ(x) = ∂ν∂
[µDν] + ig{∂ν[Dµ, Dν] + [∂[νDµ], Dν]} − g2[Dν, [Dµ, Dν]].

where left annihilation (Dµ(x)G)µ1···µn(x1, · · · , xn) = Gµµ1···µn(x, x1, · · · , xn).

• For these models, SD operators S i are right-invariant vector fields on GΛ
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fSDE in terms of Hopf algebra associated to group GΛ

• There is one fSDE S i G(ξ) = G(ξ) ξi G(ξ) for each letter ξi

• Linear combinations of ξi are precisely the primitive elements, ∆ξi = 1⊗ ξi + ξi ⊗ 1

• So one fSDE for each linearly independent primitive of sh-deconc Hopf algebra.

• Which right-invariant vector field S i to associate to a given primitive is determined by

the action S(A) of the matrix model.

• Except for the action S(A) we formulated fSDE in terms of general concepts applicable

to any group.

• Open issue: Generalize fSDE to more familiar groups and get insight into their solutions.
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Idea for an approximation method that exploits these algebraic structures

• Want to solve factorized Schwinger-Dyson equations S iG(ξ) = G(ξ)ξiG(ξ). Find

some dimensionless expansion parameter over and above 1/N

• Though classical (N =∞), involve non-commutative but associative conc product.

• Idea from Deformation Quantization

Regard a non-commutative but associative algebra as a deformation or quantization of

a commutative algebra equipped with a Poisson bracket

• E.g. Associative algebra of operators in quantum mechanics approximated by commu-

tative algebra of functions on phase space, equipped with Poisson bracket

• Can we take a further ‘classical’ limit of the factorized Schwinger-Dyson equations?
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Approximate Concatenation by Shuffle: Deformation Quantization

• fSDE S iG(ξ) = G(ξ) ∗1 ξ
i ∗1 G(ξ) where S i = ∑

n≥0(n + 1)Sj1···jniDjn · · ·Dj1

• fSDE fail to be PDEs since left annihilation Di isn’t a derivation of concatenation

product ∗1 on the RHS.

• But Di are derivations of shuffle product.

• Approximate non-commutative conc by commutative shuffle, a 2nd classical limit!

• Deformation parameter q interpolates from ∗1 = conc to ∗0 = shuffle. (See also

work of M. Rosso; G. Duchamp, A. Klyachko, D. Krob, J-Y. Thibon)

• Physical value is q = 1, measures amount by which fSDE are not PDEs.
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Reduction to Linear System at O(q0)

• We will expand conc = ∗1 around shuffle = ∗0 in powers of q = 1: ∗q = ∗0 +O(q)

• At order O(q0), just replace conc by shuffle: S iG(ξ) = G(ξ) ◦ ξi ◦G(ξ)

S i =
∑
n≥0

(n + 1)Sj1···jniDjn · · ·Dj1

• Since Di is derivation of shuffle = ◦, these really are non-linear PDEs.

• Now use the fact that S i for Gaussian, Yang-Mills, Chern-Simons models are Lie elements, i.e. derivations

of shuffle product.

• If S i is a derivation of shuffle, can linearize by passage to shuffle reciprocal of G(ξ)

F (ξ) ◦G(ξ) = 1 ⇒ S i(F (ξ) ◦G(ξ))) = 0

F ◦ S iG = −S iF ◦G ⇒ S iG = −G ◦ S iF ◦G.

• Loop equations at O(q0) become linear S iF (ξ) = −ξi. A major simplification.

• shuffle preserves cyclicity and hermiticity ⇒ FI are cyclic and hermitian just like GI
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Linear equations for shuffle reciprocal F (ξ)

• Transformation to linear equations only works for theories with derivation property

Gaussian C ij DjF (ξ) = − ξi

Chern− Simons iκ εijk[Dk, Dj]F (ξ) = − ξi

Y ang −Mills − 1

α
gikgjl[Dj, [Dk, Dl]]F (ξ) = − ξi.

• Solve linear equations for F (ξ). Then invert shuffle reciprocal to get back gluon correlations GI

GI =
|I|∑
n=1

(−1)n
∑

I=I1tI2t···tIn
Ik 6= ∅ ∀ k

FI1FI2 · · ·FIn for I 6= ∅.

I = I1 t I2 t · · · t In ⇔ I1, · · · , In are complementary order-preserving subwords of I

• For example, Gi = −Fi,

Gij = −Fij + 2FiFj

Gijk = −Fijk + 2(FiFjk + FjFik + FkFij)− 6FiFjFk

• Shuffle reciprocal is one-to-one provided G∅ 6= 0

• Remains to solve linear equations for F (ξ)! Unfortunately, they are under determined in general.
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Zeroth order Approximation for Gaussian

• For Gaussian, C ij DjF (ξ) = − ξi have unique soln. Inverting shuffle reciprocal, (S(A) = 1
2α tr A2)

Moments exact O(q0)

G2 α α

G4 2α2 6α2

G6 5α3 90α3

G8 14α4 2520α4

G2n, n→∞ (4α)n
√
πn3

(α
2
)n(2n)!

• Gives over-estimate of correlations.

• Get under-estimate by deforming Di → Di fixing conc.

Moments exact O(p0) O(p)

G2 α 0.5α 0.75α

G4 2α2 0.25α2 0.75α2

G6 5α3 0.125α3 0.646α3

G8 14α4 0.0625α4 0.490α4

G2n, n→∞ (4α)n
√
πn3

(α2 )n (α2 )n(2n log n)
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Associative q-products interpolating between shuffle and conc

• To go beyond zeroth order, we need a q-series for concatenation around shuffle

• 1-parameter family of associative products interpolate between conc (q = 1) and

shuffle (q = 0) (see also work of Thibon et. al.)

[F ∗q G]I ≡
∑

JtK=I
(1− q)χ(I,J,K)FJGK.

• Crossing number χ(I ; J,K): min # of transpositions of ji, kl to transform JK → I

• For example, χ(ijk; i, jk) = 0, χ(ijk; ik, j) = 1, χ(ijk; jk, i) = 2

• Take q → 0 get a Poisson bracket on shuffle algebra

{F,G}I = − lim
q→0

1

q
([F,G]q)I =

∑
I=JtK

χ(I ; J,K)(FJGK −GJFK).

• Still not enough, want an explicit q-series for ∗q in terms of ∗0 and Di
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Associativity of ∗q products

• Associativity follows from the interesting formula

((F ∗q G) ∗q H)I = (F ∗q (G ∗q H))I =
∑

I=JtKtL
pχ(I;J,K,L)FJGKHL

• Here I = J tK tL is the condition that J,K, L are complementary order-preserving

sub-words of I .

• p = 1− q.

• χ(I ; J,K, L) is the smallest number of transpositions needed to transform JKL into

I . It is the three word crossing number and also equals

χ(I ; J tK,L) + χ(J tK; J,K) = χ(I ; J,K t L) + χ(K t L;K,L)
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Single Matrix q-product Interpolating between Shuffle and Concatenation

• For Single Matrix reduces to Gauss q-binomial coefficients

(F ∗q G)n =
n∑
r=0

nr


1−q
FrGn−r.

nr

q

=
[n]q!

[r]q![n− r]q!
where [n]q! = [1]q[2]q · · · [n]q and [n]q =

1− qn

1− q
.

• For q = 0 get ordinary binomial coefficients and shuffle productnr


1

=

nr
; (F ∗q G)n =

n∑
r=0

nr
FrGn−r.

• For q = 1 get concatenation productnr


0

= 1; (F ∗q G)n =
n∑
r=0

FrGn−r.
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Classical Action Principle for Loop Equations

• N →∞ ‘classical’ limit, ⇒ Loop equations are classical equations of motion.

SJ1iJ2 GJ1IJ2 = δI1iI2I GI1 GI2 = ηiI

• What is the classical action or variational principle from which they follow?

• S(A) won’t do. It’s variation won’t give anomaly ηiI coming from change in measure.

• Look for classical action Ω(G) whose extrema are loop equations

LiI Ω(G) = −SJ1iJ2 GJ1IJ2 + δI1iI2I GI1 GI2 = 0.

• Differentiate Ω(G) along the vector fields LiI
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Lie Algebra of Vector Fields LiI on Configuration space PΛ for Λ matrices

• For several matrices, Lv : Ai → Ai + vIiAI are infinitesimal change of variables

LiI : Aj → Aj + εδijAI −→ Monomial vector fields

• Lv = vIiL
i
I infinitesimal automorphisms of tensor algebra in Λ generators TΛ (free

associative algebra).

• Action on coordinates [LiIG]J = δJ1iJ2
J GJ1IJ2

• LiI → 1st order differential operators on config. space LiI = GJ1IJ2
∂

∂GJ1iJ2

• LiI form a Lie algebra generalizing Witt algebra [LiI, L
j
J ] = δJ1iJ2

J LjJ1IJ2
− δI1jI2I LiI1JI2

• LiI → Lie algebra of G = Aut(TΛ) = Diff(non-commutative manifold).
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Lie Algebra of Vector Fields Lk on Configuration space for one matrix - omit

• For 1 matrix, infinitesimal change of variables is Lk : A→ A + εAk+1.

• Taking expectation values LkGp = pGk+p, is action on coordinate functions Gp

• Lk = ∑
jGj+k

∂
∂Gj

are 1st order partial differential operators on configuration space, i.e.

vector fields on PΛ.

• Lk satisfy the same Lie algebra as polynomial vector fields on R (Witt algebra)

[Lm, Ln] = (n−m)Lm+n , n,m = 0, 1, 2, . . .

• Powers 1, A,A2, A3, · · · generate the tensor algebra in one generator T1, which is also

the algebra of polynomials on the real line.
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Lie Algebra of Vector Fields Lk on Configuration space for 1-matrix - omit

• Lk can be regarded as infinitesimal automorphisms of the tensor algebra T1 in one

generator A. So {Lk} span the Lie algebra of G1 = Aut(T1)

A 7→ φ(A) = φ1A + φ2A
2 + φ3A

3 + · · · −→ Aut(T1)

• Automorphisms of the algebra of functions on a manifold can be regarded as a replace-

ment for the diffeomorphism group of a manifold.

• So can think of Lk as spanning Lie algebra of group of formal diffeomorphisms of R.

x→ x + εxk+1; Lk = xk+1 ∂

∂x
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Loop equations for a single matrix

• For a single matrix A, action is tr S(A) = tr ∑m
n=1 SnA

n and loop equations

∑
l
l Sl Gk+l =

∑
p+q=k

GpGq := ηk, k = −1, 0, 1, 2, · · ·

• Can also formulate as Mehta-Dyson equation for ρ(x) where Gk =
∫
ρ(x) xk dx

S ′(x) = 2P
∫
dy

ρ(y)

x− y
to go back, × xk+1 and

∫
dx

• Mehta-Dyson equation follows from a variational principle, extremize Ω = χ− S

Ω(ρ) = P
∫
dx dy ρ(x)ρ(y) log |x− y| −

∫
dx S(x) ρ(x)

• But ρ does not generalize to several matrices, though Gk do.

• And χ can’t be expressed in terms of Gk since log |x − y| is not a power series in x

and y simultaneously.
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Search for Classical Action for Several Matrices

• For several matrices want Ω(G) whose extremum is loop equations,

LiI Ω(G) = −SJ1iJ2 GJ1IJ2 + δI1iI2I GI1 GI2

• Action dependent term comes from variation of expectation value of original action

LiI ( SJGJ ) = SJ1iJ2GJ1IJ2.

• So let Ω(G) = χ(G)− SJ GJ where LiI χ = ηiI or dχ = η

• Extremization of Ω is the (partial) Legendre transform of χ, (think thermodynamics).

• χ(G): entropy of the non-commutative probability distribution{GI}. Maximize en-

tropy holding moments GI conjugate to couplings SI fixed (Lagrange multipliers).
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Motivation for calling χ ENTROPY

• Restrict observables: matrix elements → U(N) invariants

[Ai]
a
b −→

tr

N
Ai1i2···in

• When observables of a system are restricted there is an entropy.

• In statistical mechanics: Don’t measure positions, velocities of individual gas molecules.

Only measure macroscopic observables such as P, V, U, T, S.

• Strong interactions: Confinement of color degrees of freedom should lead to an entropy.

• Entropy = Log(volume of microstates) with same values of macroscopic observables.

• It will turn out that χ(G) is the entropy in this sense.
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Necessary Integrability Conditions for existence of χ

• LiI χ = ηiI = δI1iI2I GI1 GI2 ⇔ dχ = η

• System of 1st order linear PDEs on configuration space; LiI = GJ1IJ2
∂

∂GJ1iJ2

• Integrability condition requires dη = 0

• Integrability conditions (dη)ijIJ = LiI(L
j
Jχ)− LjJ(LiIχ)− [LiI, L

j
J ]χ = 0

⇒ LiIη
j
J − L

j
Jη

i
I = δJ1iJ2

J ηjJ1IJ2
− δI1jI2I ηiI1JI2

• Look complicated: LiI non-commuting basis unlike ∂
∂GiI

• Calculation: Checked that integrability conditions are satisfied. η → closed 1-form!
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Is χ(G) expressible in terms of moments?

• Is there χ with LiIχ = ηiI? i.e. dχ = η?

• Is η an exact 1-form? Answer: No!

• No formal series χ(G) on configuration space with dχ = η

• Not possible even for 1-matrix χ = − ∫
dx dy log |x− y| ρ(x) ρ(y)

• χ(G) essentially involves ‘logarithmic moment’. Gk are only polynomial moments!

• η is closed but not exact: Cohomological obstruction to finding χ!
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χ and Lie algebra Cohomology

• η → element of 1st cohomology of G twisted by its representation on the vector space

of formal power series in GI .

• G = Lie algebra of vector fields LiI and G is automorphism group of tensor algebra.

• η is infinitesimal version of χ.

• Expect χ ∈ 1st cohomology of group G.

• χ should be a non-trivial 1-cocycle of G = Aut(T ).

• η was got from infinitesimal change of variables.

• Suggests → find formula for χ via finite change of variable.
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Group cohomology - skip

Given a group G and a G-module V (i.e., a representation of G on a vector space V ), we can define a cohomology

theory. The r-cochains are functions

f : Gr → V.

The coboundary d is

df(g1, g2, · · · gr+1) = g1f(g2, · · · gr+1) +
r∑
s=1

(−1)sf(g1, g2, · · · gs−1, gsgs+1, gs+2, · · · gr+1) + (−1)r+1f(g1, · · · , gr).

d2f = 0 for all f . A cochain c is a cocycle or is closed if df = 0; a cocycle is exact or is a coboundary if b = df for some

f ; The rth cohomology of G twisted by the module V , Hr(G, V ) is the space of closed cochains modulo exact cochains.

H0(G, V ) is the space of invariant elements in V ; i.e., the space of v satisfying gv − v = 0 for all g ∈ G. A 1-cocycle is

a function c : G→ V satisfying

c(g1g2) = g1c(g2) + c(g1).

Solutions to this equation modulo 1-coboundaries (which are of the form b(g) = (g − 1)v for some v ∈ V ) is the first

cohomology H1(G, V ). If G acts trivially on V , a cocycle is just a homomorphism of G to the additive group of V :

c(g1g2) = c(g2) + c(g1).
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New Parametrization of Configuration Space P

• To find χ need new way of describing functions on configuration space.

• Power series in GI inadequate: cohomological obstruction.

• Another way: Change of variable φ : ΓI 7→ GI where ΓI → reference

probability distribution.

Ai 7→ φi(A) = φ
j
iAj + φ

j1j2
i Aj1Aj2 + · · · detφij > 0

Gi1···in = [φ∗Γ]ii···in = φ
J1
i1
· · ·φJnin ΓJ1···Jn

• φ → automorphism of the tensor algebra! φ ∈ Aut(T ) = G
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New Parametrization of Configuration Space P

• Configuration space carries action of automorphism group G = {φ}

φ : Γ 7→ G

• But more than one change of variable φ : ΓI 7→ GI .

• Let SG be isotropy subgroup: changes of variable fixing Γ. φ : Γ → Γ

• P = {GI} is the quotient G/SG coset space
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How does this solve problem of finding χ?

• New way to think of functions on config space P = G/SG

• Functions on group G invariant under subgroup SG

• Power series in GI can be expressed as power series in φIi . Just substitute GI =

[φ∗Γ]I = φJ1
i1 · · ·φ

Jn
in ΓJ1 · · ·ΓJn.

• But ∃ power series in φIi not expressible as series in GI! χ is one such function!

• η → infinitesimal change in integration measure: det (∂A
′

∂A )

• χ → Jacobian det ∂φ(A)
∂A for finite change of variable φ

χ(G) = χ(φ,Γ) = χ(Γ) + c(φ,Γ) = χ(Γ) + 〈 1

N 2
log det

∂φ(A)

∂A
〉
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Formula for χ: cocycle of Automorphism Group

• Put φi(A) = φjiAj + φjki AjAk + · · · in log det of Jacobian

χ(φ,Γ) = χ(Γ) + log detφji +
∞∑
n=1

(−1)n+1

n
φ̃K1i2L1
i1 φ̃K2i3L2

i2 · · · φ̃Kni1Ln
in ΓK1···KnΓLn···L1.

where φ̃Ii = [φ−1]jiφ
I
j

• Multiplicativity of det ⇒ relative entropy χ(φ,Γ)− χ(Γ) is a cocycle

c(φψ,Γ) = c(φ, ψ∗(Γ)) + c(ψ,Γ)

χ(φ,Γ)− χ(Γ) is a 1-cocycle of automorphism group Aut(TM).

• Can show that χ(φ,Γ) = χ(G) is actually a function on P = G/SG, i.e. is invariant

under SG

• If ψ∗Γ = Γ, then can show c(φψ,Γ) = c(φ,Γ). i.e. ψ ∈ SG leaves χ unchanged.
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Variational Principle is Legendre Transform of χ

• Solved problem of finding action for large N matrix models Ω = −SIGI + χ

Ω(φ,Γ) = −
∞∑
n=1

Si1···inφJ1
i1 · · ·φ

Jn
in

ΓJ1···Jn + χ(Γ) + log detφij

+
∞∑
n=1

(−1)n+1

n
φ̃K1i1L1
i2 φ̃K2i2L2

i3 · · · φ̃KninLn
i1

ΓKn···K1ΓL1···Ln

• Variational principle → Legendre transform of χ

• Maximize χ holding GI conjugate to SI fixed → determines optimal φ

• Once φoptimal is found, correlations, Free energy are

Gi1···in = φJ1
i1 · · ·φ

Jn
in

ΓJ1···Jn F (S) = −χ(φoptimal,Γ)

expressed in terms of φoptimal and reference moments ΓI

• Coefficients of φ are variational parameters.
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χ as Entropy

• Microstates = matrices; Macroscopic observables = invariants ΦI = tr
NAI

• Contrast with Thermodynamics

1. Infinite number of macroscopic observables ΦI

2. Concept of thermal equilibrium not relevant

3. Microstates matrices don’t commute: Entropy is non-commutative probability

• χ −→ log of change in volume measure −→ entropy

χ(G) = χ(φ,Γ) = χ(Γ) + c(φ,Γ) = χ(Γ) + 〈 1

N 2
log det J〉

• Coincides with entropy of non-commutative probability theory (Voiculescu)
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Entropy for 1-Matrix Models

• Interpreting χ as entropy transparent for single matrix integral Z =
∫
dA e−N tr S(A)

• Diagonalize N ×N hermitian matrix A: A −→ UDU †, D = diag (λ1, · · · , λN)

• Jacobian = Vol(hermitian matrices with common spectrum) λ1 < λ2 < · · · < λN

dA = V ol(U(N)) ∆2 ∏
a
dλa

• Vandermonde determinant ∆ = ∏
a<b(λa − λb)⇒ χ = log ∆2 = 2 ∑

a<b log |λa − λb|

• If eigenvalue density is ρ(x) = 1
N

∑
a δ(x− λa), as N →∞

χ = P
∫
ρ(x) ρ(y) log |x− y| dx dy

• This is Entropy of single operator-valued random variable.

• Contrast with Boltzmann entropy of one real-valued random variable
∫
ρ(x) log ρ(x) dx

54



Entropy and Change of Variables for 1-matrix

• Γ reference prob. distribution. G → distribution of interest

Gk =
∫
ρG(x) xk dx; and Γk =

∫
ρΓ(x) xk dx

• φ → change of variables relates the two

ρΓ(x) = ρG(φ(x)) φ′(x) and Gk =
∫
ρΓ(y) φk(y) dy

• Entropy χ(G) = P ∫
dxdy ρG(x)ρG(y) log |x− y| becomes

χ(G) = χ(Γ) + P
∫
dxdy ρΓ(x)ρΓ(y) log |φ(x)− φ(y)

x− y
|

• 2nd term on right: entropy of G relative to Γ

• If φ is an invertible power series φ(x) = φ1[x + φ̃2x
2 + φ̃3x

3 + · · ·] φ1 > 0

• Then entropy for a single matrix agrees with earlier formula for cocycle

χ(G) = χ(Γ) + log φ1 +
∞∑
n=1

(−1)n+1

n

∑
ki+li>0

φ̃k1+1+l1 · · · φ̃kn+1+lnΓk1+···knΓl1+···+ln
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String Theoretic Interpretation – skip

• We sought the action Ω(G) of a model for closed string field theory.

• In a gauge-fixed toy-model for strings on a space time with Λ points

• ΦI → ‘closed string field’, GI its vacuum expectation value.

• Closed String Field theory is a dynamical system (reminiscent of the Wess-Zumino-

Witten model) on coset space G/SG, where G = Aut(TΛ).

• We find a formula for classical action, and an approximation method to solve it.

• Includes term representing an anomaly, a non-trivial one-cocycle of G.
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Variational Approximations

• Aim: Given action S(A) find GI and free energy F in the large N limit.

• Fix a reference distribution Γ, eg. Wigner distribution, or other solved model

Ω(φ,Γ) = χ(φ,Γ)− SIGI(φ)

• Exact maximum of entropy −→ exact change of variable φ −→ exact GI , Free energy.

• For a variational approximation, take polynomial

φi = φjiAj + φj1j2i Aj1Aj2 + · · ·φj1···jni Aj1 · · ·Ajn

• Coefficients φJi are variational parameters

• Fix variational parameters by maximizing entropy
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Mean Field Theory

• Simplest possibility → linear change of variable Ai 7→ φi(A) = φjiAJ

• For this case entropy is χ = tr log φji

• For eg. consider a quartic multi-matrix model S(M) = tr [1
2K

ijAij + 1
4g

ijklAijkl]

• Variational principle: maximize Ω[φ] = tr log[φji ]− 1
2K

ijGij − 1
4g

ijklGijkl

• Reference distribution −→ Wigner distribution ⇒ all correlations can be expressed in

terms of 2-point correlation, α, β → variational parameters

Gij =


α β

β α



• Condition for extremum of Ω: Non-linear equation for Gij −→ Mean Field Theory

1

2
Kpq +

1

4
[gpqklGkl + gijpqGij + gpjqkGjk + gipqlGil] =

1

2
[G−1]pq
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Example: Quartic One Matrix Model

S(A) =
1

2
A2 + gA4

• Linear Change of variable

φ(x) = φ1x

• Cubic change of variable

φ(x) = φ1x + φ3x
3

• Compare eigenvalue distributions with exact result known from work of Brezin et. al.
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Figure 1: Eigenvalue Distribution. Dark curve is exact, semicircle is mean field and bi-modal light curve is cubic ansatz at 1-iteration.
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Example: Mehta’s 2 Matrix Model

S(A,B) = tr [1
2(A2 + B2 − cAB − cBA) + g

4(A4 + B4)]

• Take reference distribution as Gaussian and linear change of variable. Gij =


α β

β α



• Maximum of Ω occurs at (α, β) with β = cα
1+2gα and

4g2α3 + 4gα2 + (1− c2 − 2g)α− 1 = 0

• Solve and get variational free energy and all correlations.

• Compare with Mehta’s analytical results for some specific observables

Eex(g,
1

2
) = −.144 + 1.78g − 8.74g2 + · · ·

Evar(g,
1

2
) = −.144 + 3.56g − 23.7g2 + · · ·

Gex
AB(g,

1

2
) =

2

3
− 4.74g + 53.33g2 + · · ·

Gvar
AB(g,

1

2
) =

2

3
− 4.74g + 48.46g2 + · · ·
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Gex
AAAA(g,

1

2
) =

32

9
− 34.96g + · · ·

Gvar
AAAA(g,

1

2
) =

32

9
− 31.61g + 368.02g2 + · · ·

For strong coupling and arbitrary c:

Eex(g, c) =
1

2
log g +

1

2
log 3− 3

4
+ · · ·

Evar(g, c) =
1

2
log g +

1

2
log 2 +

1√
8g

+O(
1

g
)

Gex
AB(g, c) → 0 as g →∞

Gvar
AB(g, c) =

c

2g
− c

(2g)
3
2

+O(
1

g2 )

Gex
AAAA(g, c) =

1

g
+ · · · .

Gvar
AAAA(g, c) =

1

g
− 2

(2g)
3
2

+O(
1

g2 )

• Both for strong and weak coupling, variational approx. gives good estimates.

• Mean Field Theory does not do well near phase transitions.
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Conclusions

• Regarded large-N multi-matrix models as regularizations of Yang-Mills theory.

• Found a variational principle for fSDE for invariant observables.

• Non-trivial due to cohomological obstruction.

• Problem solved by expressing configuration space as a coset space of non-commutative

analogue of diffeomorphism group.

• Variational principle interpreted as Legendre transform of entropy of operator-valued

random variables.

• Led to variational approximations for matrix models.

• Brings together cohomology of Aut(TΛ), non-commutative probability and physics.
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Summary: Hopf algebraic formulation

• G(ξ) of large-N matrix models live in the shuffle-deconcatenation Hopf algebra.

• Identified a finitely generated matrix model analogue of the group of loops on space

time, the spectrum GΛ of this Hopf algebra. Lie algebra of GΛ is the FLAΛ

• G(ξ) is a function on GΛ. It satisfies quadratic equations in convolution

product on the group: factorized SD equations S i G(ξ) = G(ξ) ξi G(ξ).

• SD operators S i of Yang-Mills, Chern-Simons and Gaussian models are right-invariant

vector fields on GΛ, i.e., invariant derivations of the Hopf algebra.

• fSDE can be transformed into linear equations if we replace convolution

(concatenation) by shuffle. To approximately solve: Expand concatenation as a defor-

mation series around shuffle.
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