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Matrix Integrals and Knot Theory

Main idea :
Use combinatorial tools of Quantum Field Theory in Knot Tityeo

Plan

| Knot Theory : a few definitions

Il Matrix integrals and Link diagrams
1p g2 4
fdl\/lel\ltr(_ilvI +gM’) N x N matricesN — oo
Removals of redundancies
= reproduces recent results ®findberg & Thistlethwalte (1998)

based onuite (1963)

[l Virtual knots and links : counting and invariants
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Basics of Knot Theory

& O O qxoox I

a knot , links and tangles
Equivalence up to isotopy
Problem : Count topologically inequivalent knots, linksidangles

Represent knots etc by thgalanar projectionwith minimal number of
over/under-crossings

Theorem Two projections represent the same knot/link iff they may be
transformed into one another by a sequence@tiemeister moves :

NTY N =R AK
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Avoid redundancies by keeping only

primelinks (i.e. which cannot be factored) &@

Consider the subclass afternatingknots, links and tangles, in which one
meets alternatingly over- and under-crossings.

Forn > 8 (resp. 6) crossings, there are knots (links) which canaatrawn
In an alternating formAsymptotically, the alternating are subdominant.

Major result (Tait (1898),Menasco & Thistlethwalite, (199)L)
Two alternating reduced knots or

links represent the same object iﬁ\/\\/@/‘ ~— j@:\/
N \

they are related by a sequence of
“flypes” on tangles

Problem Count alternating prime links and tangles
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N—-

A 8-crossing non-alternating knot
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Matrix Feynman diagrams and link diagrams

Consider integral over compler@n Hermiteahmatrices

/
M= M" gy NI-trMMT 4 St (MMT)?] X \

= oriented(double) lines in propagators and vertices.

WhenN — oo, leading contribution from genus zero (“planar”) diagrams

n

lIMN— N2 logZ = > planar dlagramssymr%]cactor
with n vertices

for example, to second orde N° @ N
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Moreover : Conservation of arrows alternatingdiagram !

3 XX

But going from complex matrices to hermitian matrices ddesdfect the
planar limit. .. up to a global factor 2.

Moral After removing redundancies (incl. flypes), counting of kiean
diagrams oM* integral, (ovethermitianmatrices)

t 2 4

for N — oo, yields the counting of alternating links and tangles.
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Non perturbative results on M# integral, N — oo

ttena2 o 9trpad
Compute largeN limit of integral Z = fdMeN[_ZtrM +5trM? b

saddle point method, or orthogonal polynomials,or ...

y

In theN — oo limit, continuous distribution of eigenvalu@swith density
u(A) of support|—2a, 2aj (deformed semi-circle law)

) = = (1— zt%a2 - t%)\z)\/4a2 Y

211
9.4 .2 _
3t—2a —a"+1=0
Thus “planar” limit oftr M# integral

jim Iog 2(9) _

N — o0 ( ,0) (t g) }|Oga — i(a _1)(9_a2)

2 24
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. 3g9\P (2p—1)! o 0 —7/2
F(t,g) = F;Zl ( 2 ) SI(pT2) As p Fp ~ cons{12)Fp
Also 2-point functionG, = §a2(4— a%) = §

and (connected and “truncated”) 4-point function

 (5-28%)(a?—1)
N (4-a?)?

10
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Counting Links and Tangles

For the knot interpretation of previous counting, manyl@avant diagrams
have to be discarded.

O -Q

“Nugatory” and “non-prime” are removed by adjusting t(g) so that

@ =1 (*wave function renormalisation”).

11
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In that way, correct counting of links .. .up to 6 crossings!!

D HPOLTES

5

0 VYO OLY ®

© ><><><§§ m%?é O >Q

Asymptotic behaviouF, ~ const(27/4)P p~7/2

12
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What happens fan > 6 crossings?  Flypes!

Must quotient by the flype equivalence ! Original combingticireatment
(Sundberg & Thistlethwaite, Z-J&Aephrased and simplified by Z.-J.: it
amounts to a coupling constant renormalisation gg ! In other words,
start fromNtr (3tM? — M%), fix t = t(go) as before. Then compulego)

and determingp(g) as the solution of

2
g":g(‘“ (1—9)(1+r(90))> ’

then the desired generating functior i&)) = I'(go).
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Indeed letH (g) be the generating
function of “horizontally-two-

particle-irreducible”

(cannot separate the left part from

diagrams

the right by cutting two lines)

H =

+

+

and then writd =H /(1—H)

N

N—

14
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thus, withi”, H denot
of flype equivalence classe$prime tangles, resp 2PI tangles and |
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o= N - . L
X . X

Return tol (go)

suggests to determirg = go(g) by demanding thagg = g— 2gH’

Three relations betweam, H', g andl" (g)
EliminatingH’ and then

16
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Eliminatinggo givesr (g) = ' (go(g)), the generating function of
(flype-equivalence classes of) tangles.

Find

[ =g+29°+4g%+10g* +299° + 9808 + 372" + 15388+ 675%° + - --

. ) ~ p
Asymptotic behaviouF , ~ const ( 10%+ 4V021°°1> p—>/2

All this reproduces the results &fundberg & Thistlethwaite

* Can we go further ? Control the number of connected comperrarg.

countknotsrather tharinks?

17
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Coloured Links and Tangles

20(ng)— [ eV (5 T ME+ 3 5802 MaMsMal)
) — a—=

Each connected component may comaea oolours

& - @

If we write the free energ¥ (n,g) = S F(9) )Nk, R = generating
function of diagrams witlk loops. In particularf; (g), that ofknots

Unfortunately this is computable only far= —2,1,2
[P.Z.-J. 99, Z-J-Z 00]

* Open and important problem to understand such integralein+ 0
limit (replicas, combinatorics. . .)
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Another direction : Virtual Links

Higher genus contributions to matrix integral

What do they count ?
Suggested that knots/links live on other manifalgsx |

Virtual knots and linksKauffman] : equivalence classes of 4-valent
diagrams with ordinary under- or over-crossings

plus a new type ofirtual crossing,\/ \/ >X<
/ N

19



Equivalence w.r.t. generalized Reidemeister moves

DD 0 D

xooC X OC

XX X X
XX
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From a different standpoint : Virtual knots (or links) seadaawn in a
“thickened” Riemann surfac® := Z x |0, 1], modulo isotopy in%, and
modulo orientation-preserving homeomorphism& cgfind addition or
subtraction of empty handles.

o ©O ©

But this is precisely what Feynman diagrams of the matriggrell do for
us!

Thus return to the integral oveomplex matrices

and computé-(g,t,N) = logZ beyond the leading largé limit . ...
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(0]

F(g.t,N) =5 N*2'F (g t)
h=0

F((g) : Feynman diagrams of genbs
F) computed byvorris (1991)
F (2 andF ® by Akermannand byAdamietz(ca. 1997)

As before, determine=1t(g,N) so as to remove the non prime diagrams.
Find the generating function of tangle diagrainig) = 20F /0g — 2

r©g) =g+20¢°+6g3+22g*+919°+4089°+1938g" +9614g8 +493355°+260130'%+-O(g't)

rg) —g+8¢2+59g°+420g*+29409°+2038490+14047%" +964184%+65984815°+4505987210+0(gt
r@g) =17g3+4560*+77289°+1047625°+1240518)"+13406796%+135637190°+ 1305368598 °+-O(g:
r(g) =1259¢°+620729%+1740158)" +-363168728+62736868@°+9484251929°+0(g'?)

r@(g) —200589¢g” +149102169%+600547192°+1734780282410+-0(g!1)

r®g) —547665169°+55541655369+-0(g11)
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Q@ &K

The genus 0 and 1 2-crossing alternating virtual link diagga the two
representations, the Feynman diagrams on the left, theaVaiagrams on
the right : for each, the inverse of the weightHns indicated

23
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g
¥ 7
D T

order 4, genus 2
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Removing the flype redundancies.

R, A
AR g§

First occurences of flype equivalence in tangles with 3 angss

28
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Removing the flype redundancies.

R, A
AR g§

First occurences of flype equivalence in tangles with 3 angss

29
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It is suggested that it is (necessary and) sufficient to gnoby theplanar
flypes, thus to perform the samenormalizationg — go(g) as for genus O.

Generalized flype conjecture : For a given (minimal) genus,
rM(g) =M (go) is the generating function of flype-equivalence classes of

virtual alternating tangles. Then asymptotic behavior

P
N (101+ \/21001> 2301

# inequivalent tangles of order 20 2

Test thisgeneralized flype conjectul®y computing invariants of virtual
links

1 linking numbers
2 polynomials : Jones, cabled Jones, Kauffman,. ..
3 Alexander-Conway polynomials and their multi-variabléessions . . .

4 fundamental groum
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Up to order 4 (4 real crossings), this suffices to distingaish
flype-equivalence classes : Conjectyre

Higher orders : sometimes difficult to distinguish imagedemdiscrete
symmetries (mirror, “global flip”=mirrox under-ck— over-cr.)? ...
Examples :

A genus-1 order-5 virtual diagram which is distinguishemhirits mirror
Image through the 2-cabled Jones polynomial
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At order 5, a pair of virtual flipped knots of genus 1, distirgied by their
Alexander-Conway polynomial.
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(D) (@R

A pair of virtual flipped knots of genus 1, conjectured to ba eguivalent.
w
w

A pair of virtual flipped knots of genus 2, conjectured to ba eguivalent.

33
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Conclusions

Field theoretic methods : Feynman diagrams and matrix iategout also
transfer matrix methods, offer new and powerful ways of hiagdhe
counting of links/tangles. Some progress, but still mangrissues.

e Count knots (rather than linksKj, = # knots withp crossings
Consider ar-colouring of links, then term linear in....?

e Asymptotic behaviour oK, asp — o ?

Kp ~ CtPpY—3,y= —%”, y—3~ —3.7676[G. Schaeffer and P. Z.-J.]
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