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Main idea :

Use combinatorial tools of Quantum Field Theory in Knot Theory

Plan

I Knot Theory : a few definitions

II Matrix integrals and Link diagrams
R

dMeNtr(−1
2M2 +gM4) N×N matrices,N → ∞

Removals of redundancies

⇒ reproduces recent results ofSundberg & Thistlethwaite (1998)

based onTutte (1963)

III Virtual knots and links : counting and invariants
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Basics of Knot Theory

a knot , links and tangles

Equivalence up to isotopy

Problem : Count topologically inequivalent knots, links and tangles

Represent knots etc by theirplanar projectionwith minimal number of
over/under-crossings

Theorem Two projections represent the same knot/link iff they may be
transformed into one another by a sequence ofReidemeister moves :

; ;
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Avoid redundancies by keeping only

primelinks (i.e. which cannot be factored)
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Consider the subclass ofalternatingknots, links and tangles, in which one

meets alternatingly over- and under-crossings.

Forn≥ 8 (resp. 6) crossings, there are knots (links) which cannot be drawn

in an alternating form.Asymptotically, the alternating are subdominant.

Major result (Tait (1898),Menasco & Thistlethwaite, (1991))

Two alternating reduced knots or

links represent the same object iff

they are related by a sequence of

“flypes” on tangles

Problem Count alternating prime links and tangles
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A 8-crossing non-alternating knot
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Matrix Feynman diagrams and link diagrams

Consider integral over complex (non Hermitean) matrices

i
j

l
kM M+

R

dMeN[−t trMM† + g
2tr(MM†)2] j

i
k
l

mnp
q

⇒ oriented(double) lines in propagators and vertices.

WhenN → ∞, leading contribution from genus zero (“planar”) diagrams:

limN→∞
1

N2 logZ = ∑ planar diagrams
with n vertices

gn

symm.factor

for example, to second order 0
NN

2
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Moreover : Conservation of arrows⇒ alternatingdiagram !

But going from complex matrices to hermitian matrices doesn’t affect the

planar limit . . . up to a global factor 2.

Moral After removing redundancies (incl. flypes), counting of Feynman

diagrams ofM4 integral, (overhermitianmatrices)

Z =

Z

dMeN[− t
2trM2 + g

4trM4]

for N → ∞, yields the counting of alternating links and tangles.
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Non perturbative results onM4 integral, N → ∞

Compute largeN limit of integral Z =
R

dMeN[− t
2trM2 + g

4trM4] by

saddle point method, or orthogonal polynomials,or . . .

In theN → ∞ limit, continuous distribution of eigenvaluesλ with density

u(λ) of support[−2a,2a] (deformed semi-circle law)

u(λ) =
1
2π

(1−2
g
t2 a2−

g
t2 λ2)

√
4a2−λ2

3
g
t2 a4−a2 +1 = 0

Thus “planar” limit oftrM4 integral

lim
N→∞

1
N2 log

Z(t,g)

Z(t,0)
= F(t,g) =

1
2

loga2−
1
24

(a2−1)(9−a2)
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F(t,g) = ∑
p=1

(3g
t2

)p (2p−1)!
p!(p+2)!

As p→ ∞ Fp ∼ const(12)pp−7/2

...

Also 2-point functionG2 = 1
3t a

2(4−a2) =
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and (connected and “truncated”) 4-point function

Γ =
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=
(5−2a2)(a2−1)

(4−a2)2
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Counting Links and Tangles

For the knot interpretation of previous counting, many irrelevant diagrams

have to be discarded.
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“Nugatory” and “non-prime” are removed by adjustingt = t(g) so that
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= 1 (“wave function renormalisation”).
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In that way, correct counting of links . . .up to 6 crossings !

~
~(c)

31 525141
2 51

2
21

2 41

1
4

1
4

...

(a)

1
3

1
2

1
5

1 1

(b)

...

Asymptotic behaviourFp ∼ const(27/4)p p−7/2
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What happens forn≥ 6 crossings ? Flypes !

~

Must quotient by the flype equivalence ! Original combinatorial treatment

(Sundberg & Thistlethwaite, Z-J&Z)rephrased and simplified byP. Z.-J.: it

amounts to a coupling constant renormalisationg→ g0 ! In other words,

start fromNtr
(1

2tM2− g0
4 M4

)
, fix t = t(g0) as before. Then computeΓ(g0)

and determineg0(g) as the solution of

g0 = g

(
−1+

2
(1−g)(1+Γ(g0))

)
,

then the desired generating function isΓ̃(g) = Γ(g0).
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Indeed letH(g) be the generating

function of “horizontally-two-

particle-irreducible” diagrams

(cannot separate the left part from

the right by cutting two lines)
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H   = = + +

and then writeΓ=H/(1−H)
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But ~
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thus, withΓ̃ , H̃ denoting generating functions

of flype equivalence classesof prime tangles, resp 2PI tangles and if

H̃ = g+ H̃ ′, Γ̃ = g+gΓ̃+ H̃ ′

1−H̃ ′
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Return toΓ(g0)

Γ( ) ...
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g

suggests to determineg0 = g0(g) by demanding thatg0 = g−2gH̃ ′

����

����

����

����

����

����

��
��

��
��

��
��

��
��

g0

Three relations betweeng0, H̃ ′, g andΓ̃(g)

EliminatingH̃ ′ and then



Matrix Integrals and Knot Theory 17

Eliminatingg0 givesΓ̃(g) = Γ(g0(g)), the generating function of

(flype-equivalence classes of) tangles.

Find

Γ̃ = g+2g2 +4g3 +10g4 +29g5 +98g6 +372g7 +1538g8 +6755g9 + · · ·

Asymptotic behaviour̃Γp ∼ const
(

101+
√

21001
40

)p
p−5/2

All this reproduces the results ofSundberg & Thistlethwaite.

⋆ Can we go further ? Control the number of connected components ? i.e.

countknotsrather thanlinks?



Matrix Integrals and Knot Theory 18

Coloured Links and Tangles

Z(N)(n,g) =
R

∏n
a=1dMa e

N tr
(
−1

2 ∑n
a=1M2

a + g
4 ∑n

a,b=1MaMbMaMb

)

Each connected component may come inn colours

If we write the free energyF(n,g) = ∑∞
k=1 Fk(g)nk, Fk = generating

function of diagrams withk loops. In particular,F1(g), that ofknots.

Unfortunately this is computable only forn = −2,1,2
[P.Z.-J. 99, Z-J–Z 00]

⋆ Open and important problem to understand such integrals in then→ 0
limit (replicas, combinatorics. . .)
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Another direction : Virtual Links

Higher genus contributions to matrix integral

What do they count ?

Suggested that knots/links live on other manifoldsΣh× I

Virtual knots and links[Kauffman] : equivalence classes of 4-valent

diagrams with ordinary under- or over-crossings

plus a new type ofvirtual crossing,
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Equivalence w.r.t. generalized Reidemeister moves
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From a different standpoint : Virtual knots (or links) seen as drawn in a

“thickened” Riemann surfaceΣΣ := Σ× [0,1], modulo isotopy inΣΣ, and
modulo orientation-preserving homeomorphisms ofΣ, and addition or

subtraction of empty handles.

But this is precisely what Feynman diagrams of the matrix integral do for

us !

Thus return to the integral overcomplex matrices

Z(g,N) =
Z

dMeN[−t trMM† + g
2tr(MM†)2]

and computeF(g, t,N) = logZ beyond the leading largeN limit . . .
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F(g, t,N) =
∞

∑
h=0

N2−2hF(h)(g, t)

F(h)(g) : Feynman diagrams of genush

F(1) computed byMorris (1991)
F(2) andF(3) by Akermannand byAdamietz(ca. 1997)

As before, determinet = t(g,N) so as to remove the non prime diagrams.
Find the generating function of tangle diagramsΓ(g) = 2∂F/∂g−2

Γ(0)(g) =g+2g2+6g3+22g4+91g5+408g6+1938g7+9614g8+49335g9+260130g10+O(g11)

Γ(1)(g) =g+8g2+59g3+420g4+2940g5+20384g6+140479g7+964184g8+6598481g9+45059872g10+O(g11

Γ(2)(g) =17g3+456g4+7728g5+104762g6+1240518g7+13406796g8+135637190g9+1305368592g10+O(g11

Γ(3)(g) =1259g5+62072g6+1740158g7+36316872g8+627368680g9+9484251920g10+O(g11)

Γ(4)(g) =200589g7+14910216g8+600547192g9+17347802824g10+O(g11)

Γ(5)(g) =54766516g9+5554165536g10+O(g11)
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1 1

The genus 0 and 1 2-crossing alternating virtual link diagrams in the two

representations, the Feynman diagrams on the left, the virtual diagrams on

the right : for each, the inverse of the weight inF is indicated
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2 2

6 6

66

order 3, genus 0 and 1
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8 8

2

order 4, genus 0
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44

22

2

1 1

1

2

2

2 2

8

4

order 4, genus 1
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8

1

1

order 4, genus 2
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Removing the flype redundancies.

~ ~

First occurences of flype equivalence in tangles with 3 crossings
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Removing the flype redundancies.

~ ~

First occurences of flype equivalence in tangles with 3 crossings
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It is suggested that it is (necessary and) sufficient to quotient by theplanar
flypes, thus to perform the samerenormalizationg→ g0(g) as for genus 0.

Generalized flype conjecture : For a given (minimal) genush,
Γ̃(h)(g) = Γ(h)(g0) is the generating function of flype-equivalence classes of
virtual alternating tangles. Then asymptotic behavior

# inequivalent tangles of orderp = Γ̃(h)
p ∼

(
101+

√
21001

40

)p

p
5
2(h−1) .

Test thisgeneralized flype conjectureby computing invariants of virtual
links

1 linking numbers

2 polynomials : Jones, cabled Jones, Kauffman,. . .

3 Alexander-Conway polynomials and their multi-variable extensions . . .

4 fundamental groupπ
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Up to order 4 (4 real crossings), this suffices to distinguishall
flype-equivalence classes : Conjecture

√

Higher orders : sometimes difficult to distinguish images under discrete
symmetries (mirror, “global flip”=mirror× under-cr↔ over-cr.) ? . . .
Examples :

A genus-1 order-5 virtual diagram which is distinguished from its mirror
image through the 2-cabled Jones polynomial
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At order 5, a pair of virtual flipped knots of genus 1, distinguished by their

Alexander-Conway polynomial.
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A pair of virtual flipped knots of genus 1, conjectured to be non equivalent.

A pair of virtual flipped knots of genus 2, conjectured to be non equivalent.
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Conclusions

Field theoretic methods : Feynman diagrams and matrix integrals, but also

transfer matrix methods, offer new and powerful ways of handling the

counting of links/tangles. Some progress, but still many open issues.

• Count knots (rather than links) ?Kp = # knots withp crossings.

Consider an-colouring of links, then term linear inn . . . ?

• Asymptotic behaviour ofKp asp→ ∞ ?

Kp ∼Cτppγ−3, γ = −1+
√

13
6 , γ−3≈−3.7676[G. Schaeffer and P. Z.-J.]

• Non alternating Links and Knots ? ? ? ? ? ? ? ? ? ? ? ? ?


