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Plan of the three lectures

• Introduction : Matrix integration, why and how ?

• Lecture 1 : Feynman diagrams and largeN limit of matrix integrals

• Lecture 2 : Actual computation of (largeN limit) of matrix integrals

• Lecture 3 : Applications : counting of alternating links andtangles
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Why matrix integrals ?

– Random matrices, from statistics to physics (heavy nuclei, disordered
mesoscopic systems,. . .), fromWishartto Wigner, Dyson, Mehta,. . .

– Feynman diagrams[’t Hooft] (these lectures)
– Unexpected connections with combinatorics (these lectures)
– with Riemannζ function, with algebraic geometry etc, etc . . .

Matrix integrals, how ? what ?
Pick a set of matrices, for exampleN×N Hermitian matrices (these
lectures) or symmetric, or unitary, etc, and consider integrals of the form

Z =
Z

dMexp−NtrV(M)

typically,V a polynomialV = 1
2M2 + · · ·, and accordingly

〈F(.)〉 = Z−1 R

dMF(M)e−NtrV(M).
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Basics of Feynman diagrams

Consider a Gaussian integral overn real variablesxi , A= AT > 0 def. matrix

Z

dnxe−
1
2 ∑xiAi j x j =

(2π)n/2

det
1
2 A

Z

dnxe−
1
2 ∑xiAi j x j +∑bixi =

(2π)n/2

det
1
2 A

e
1
2 ∑biA

−1
i j b j

Differentiate w.r.t.bi

〈xk1xk2 · · ·xkℓ
〉 :=

R

dnx xk1xk2 · · ·xkℓ
e−

1
2x.A.x

R

dnxe−
1
2x.A.x

=
∂

∂bk1

· · · ∂
∂bkℓ

e
1
2b.A−1.b

∣
∣
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b=0
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kPℓ
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Wick theorem also applies to monomials (n = 1 variable for simplicity) :

p vertices propagatorA−1

〈(x4)p〉 = Σ
graphs

Non Gaussian integrals (g < 0) : power series “perturbative” expansions

Z =
Z

dxe−
1
2Ax2 + g

4!x
4

=
(2π

A

) 1
2

∞

∑
p=0

gp

p!

Z

dx
(x4

4!

)p
e−

1
2Ax2

=
(2π

A

) 1
2

∞

∑
p=0

∑
graphsG with 2p lines
and p 4−valent vertices

gp

|AutG |A
−2p

logZ = connectedFeynman diagrams

=
g

8A2 +
g2

A4

( 1
2.4!

+
1
24

)

+ · · ·

= + · · ·
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Notes :

(i) sum over alltopologically distinct diagrams

(ii) symmetry factor= |AutG | is the order of the automorphism group of

the diagram,i.e.of the group of permutations of vertices andinternal lines

that leave the diagram invariant.
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Matrix Integrals : Feynman Rules

N×N Hermitean matricesM, dM = ∏i dMii ∏i< j dℜeMi j dℑmMi j

(measure invariant underM →UMU†, U ∈ U(N)

Z =: eF =
R

dM eN[−1
2trM2 + g

4trM4]

Feynman rules : propagatori
j

l
k=

1
N δiℓδ jk [’t Hooft]

4-valent vertex :
j

i
k
l

mnp
q

= gNδ jkδℓmδnpδqi



Matrix Integrals and Applications 8

For each connected diagram contributing

to logZ : fill each closed index loop with

a disk⇒ discretized closed 2-surfaceΣ
Thus : index loop↔ face ofΣ
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Power ofN in a connected diagram

• each vertex→ N ;

• each double line→ N−1 ;

• each index loop→ N.

ThusN#vert.−#lines+#loops= NχEuler(Σ)

[’t Hooft (1974)]. For example, compare

gN
0gN

2

A topological expansion : F = logZ = ∑
conn. surf.Σ

N2−2genus(Σ) g#vert.(Σ)

symm. factor

= ∑
n,h

gnN2−2hF(n,h) =“
∞

∑
h=0

N2−2hF(h)(g).”
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Thus largeN limit of matrix integral
R

DMe−Ntr(M2+ g
4M4) = generating

function ofplanar4-valent graphs. . .(cf census of planar maps by Tutte)
[Brézin, Itzykson, Parisi, Z. 1978]

“lim N→∞
1

N2 logZ ” = ∑∞
n=0gnF(n,0) = ∑ planar diagrams

with n 4−vertices

gn

symm.factor

or in a dual way, ofquadrangulationsof 2D surfaces of genus 0

[Kazakov ; David ; Kazakov-Kostov-Migdal ; Ambjørn-Durhuus-Fröhlich ’85]
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Thus largeN limit of matrix integral
R

DMe−Ntr(M2+ g
3M3) = generating

function of planar3-valent graphs. . .[Brézin, Itzykson, Parisi, Z. 1978]

or in a dual way, oftriangulationsof 2D surfaces of genus 0

[Kazakov ; David ; Kazakov-Kostov-Migdal ; Ambjørn-Durhuus-Fröhlich ’85]

Triangulated surfaces and discrete 2D gravity

Thus : LargeN limit of matrix integrals⇒ Counting of planar objects :

maps, triangulations, “alternating” knots and links[P Z-J & J-B Z], etc, or

of objects of higher topology . . .
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Computational techniques

Consider integral overN×N Hermitian matrices

Z =
Z

dMe−Ntr V(M) ,

V(M) a polynomial of degreed+1. For ex.V3(M) = (1
2M2 + g

3M3) and
V4(M) = (1

2M2 + g
4M4). Note that multi-traces are excluded, for example

(trM2)2.

Integrand and measure are invariant underU(N) transformations
M →UMU†. Express both in terms ofeigenvaluesλ1, · · · ,λN of M :

Z =
Z N

∏
i=1

dλi ∏
i< j

(λi −λ j)
2e−N∑N

i=1V(λi) ,

Several ways to treat this integral : saddle point approximation ; orthogonal
polynomials ; “loop equation” (aka Schwinger-Dyson equation). . .
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1. Saddle point approximation

Rewrite

Z =
Z N

∏
i=1

dλi exp

(

2∑
i< j

log|λi −λ j |−N
N

∑
i=1

V(λi)

)

In the largeN limit, if λ ∼ O(1), both terms in exponential are of orderN2.

Look for the stationary point, i.e. the solution of

2
N ∑

j 6=i

1
λi −λ j

= V ′(λi) . (∗)

To solve this problem, introduce the resolvent

G(x) =
1
N

〈

tr
1

x−M

〉

=
〈 1

N

N

∑
i=1

1
x−λi

〉

.
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Computing its square leads after some algebra to

G2(x) =
1

N2

〈

∑
i, j=1,···,N

1
(x−λi)(x−λ j)

〉

= · · · = − 1
N

G′(x)+V ′(x)G(x)−P(x)

with P(x) := 1
N

〈

∑N
i=1

V′(x)−V′(λi)
x−λi

〉

apolynomialin x of degreed−1, i.e.

G2(x)−V ′(x)G(x)+
1
N

G′(x)+P(x) = 0 .

(Beware ! Not exact forN finite !) ForN large, neglect the 1/N term⇒
quadratic equation forG(x), with yet unknown polynomialP, hence

G(x) =
1
2

(

V ′(x)−
√

V ′(x)2−4P(x)

)

(minus sign in front of√ dictated by the requirement that for large|x|,
G(x) ∼ 1/x.)

In that largeN limit, the λ’s form a continuous distribution with density
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ρ(λ) on a supportS ,
R

S dλρ(λ) = 1, andG(x) =
R

S
dµρ(µ)

x−µ .

For a purely Gaussian potentialV(λ) = 1
2λ2, Wigner’s “semi-circle law” :

ρ(λ) = 1
2π
√

4−λ2 on the segmentλ ∈ [−2,2].
For more general potentials, assume firstS to be still a finite segment
[−2a′,2a′′], in such a way that (*) becomes

2P.P.
Z 2a′′

−2a′

dµρ(µ)

λ−µ
= V ′(λ) if λ ∈ [−2a′,2a′′] .

(P.P.= principal part), expressing that, along its cut,

G(x± iε) =
1
2

V ′(λ)∓ iπρ(x) x∈ [−2a′,2a′′] . Thus

G(x) =
1
2

V ′(x)−Q(x)
√

(x+2a′)(x−2a′′)

where the coefficients of the polynomialQ(x) anda′, a′′ are determined by
the condition thatG(x) ∼ 1/x for large|x|. Q is of degreed−1. The
solution is unique (under the one-cut assumption).
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Example For the quartic potentialV(λ) = 1
2λ2 + g

4λ4, by symmetry
a′ = a′′ =: a,

G(x) =
1
2
(x+gx3)− (

1
2

+
g
2

x2 +ga2)
√

x2−4a2

with a2 the solution of

3ga4 +a2−1 = 0 (EQa2)

which goes to 1 asg→ 0 (a limit where we recover Wigner’s semi-circle
law). From this we extract

ρ(λ) =
1
π

(
1
2

+
g
2

λ2 +ga2)
√

4a2−λ2

and we may compute all invariant quantities like the free energy or the
moments

G2p :=
〈 1

N
trM2p

〉

=
Z

dλ λ2pρ(λ) .

For exampleG2 = (4−a2)a2/3, G4 = (3−a2)a4, etc. All these functions
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of a2 are singular as functions ofg at the pointgc = − 1
12 where the two

roots of(EQa2) coalesce. For example the genus 0 free energy

F(0)(g) : = lim
N→∞

(1/N2) log

(
Z(g)

Z(0)

)

=
1
2

loga2− 1
24

(a2−1)(9−a2)

= ∑
p=1

(3g)p (2p−1)!
p!(p+2)!

[Tutte 62,BIPZ 78]

...

has a power-law singularity

F(0)(g) ≈
g→gc

|g−gc|5/2

which reflects on the large order behaviour of its series expansion

F(0)(g) =
∞

∑
n=0

fngn , fn ≈
n→∞

const|gc|−nn−7/2 .
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Comments

i) Nature of the 1/N2 and of theg expansions, algebraic singularity at

finite gc

ii) “Universal” singular behavior atgc

iii) Extension to several cuts, the rôle of the algebraic curve (cf Eynard).
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2. Orthogonal polynomials
Z

dλPm(λ)Pn(λ)e−NV(λ) = hnδmn

ExpressZ andF in terms of thehn’s, their largen limit, etc.

[Mehta, Bessis, . . .]

3. Loop (or Schwinger-Dyson) equations

Z

dM
∂

∂Mi j
{· · ·e−NtrV(M)} = 0

and make use of factorization property

〈 1
N trP1

1
N trP2〉 = 〈 1

N
trP1〉〈

1
N

trP2〉
︸ ︷︷ ︸

disconnected diagrams

+O( 1
N2 )

⇒ Recover algebraic equation satisfied byG(x), etc.


