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Plan of thethreelectures

e Introduction : Matrix integration, why and how ?
e Lecture 1 : Feynman diagrams and lai@mit of matrix integrals
e Lecture 2 : Actual computation of (larde limit) of matrix integrals

e Lecture 3 : Applications : counting of alternating links aadgles
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Why matrix integrals?

— Random matrices, from statistics to physics (heavy nudisordered
mesoscopic systems,. . .), frovishartto Wigner, Dyson, Mehta.,. .

— Feynman diagramg Hooft] (these lectures)

— Unexpected connections with combinatorics (these lectures)

— with Riemann( function, with algebraic geometry etc, etc ...

Matrix integrals, how ? what ?
Pick a set of matrices, for examdiex N Hermitian matrices (these
lectures) or symmetric, or unitary, etc, and consider iratisgof the form

Z= /dMexp—NtrV(M)

typically, V a polynomiaV = M2+ ..., and accordingly
(F(.))y=2"1[dMF(M)e NrVIM),
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Basics of Feynman diagrams

Consider a Gaussian integral overeal variables;, A= A" > 0 def. matrix
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Wick theorem also applies to monomials=t 1 variable for simplicity) :
p vertices propagatok 1

(XXX D =8,

Non Gaussian integralg  0) : power series “perturbative” expansions

Z = /dxe_%AX2+%X4: /dx Pe™2 AX
Opl 4|
_ % i g A—2P
|Aut G |

=0 graphsg with 2p lines
and p 4—valent vertices

logZ = connected~eynman diagrams
2
9 g ( 1 1)
8A2 JrA4 2.4!+24 i

_ O < OO L
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Notes :

(1) sum over alltopologically distinct diagrams

(i) symmetry factor= |Aut G | is the order of the automorphism group of
the diagrami.e. of the group of permutations of vertices anternallines

that leave the diagram invariant.
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Matrix Integrals: Feynman Rules

N x N Hermitean matrice™l, dM = [7; dM; [ ; dUeM; dOmM;
(measure invariant undét — UMUT, U € U(N)

Z=¢ = [dM N[—3trM? + GtrM
Feynman rules : propagati@f; = =810k ['t Hooft]

4-valent vertex QX = gNOjk OrmOnpQyi
kI

i
)
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For each connected diagram contributing | E\/‘

to logZ : fill each closed index loop with
a disk=- discretized closed 2-surface
Thus : index loop— face ofZ
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Power ofN in a connected diagram
e each vertex— N ;
e each double line- N~1;

e each index loop— N.
ThusN#vert —#lines+#loops__ NxEu|er(Z)

't Hooft (1974)]. For example, compare

A topological expansion: F

g#ve ()

NZ—denu$Z)

logZ =

conn surf.Xx

— ZlgnNZZhF(n,h) & Z NZ—ZhF(h) (g)-”
h=0

n?

symm. factor
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Thus largeN limit of matrix integral [ DMe~Nt (M*+3M%) = generating

function ofplanar4-valent graphs. . .(cf census of planar maps by Tutte)
[Brézin, Itzykson, Parisi, Z. 1978]

n

g
symmfactor

“lim N — 00 L |OgZ” = 2?10:0 gnF<n’O) = Z planar diagrams

with n 4—vertices

or in a dual way, ofjuadrangulation®f 2D surfaces of genus O

[Kazakov ; David ; Kazakov-Kostov-Migdal ; Ambjgrn-Durhuus-Frohlich ’85]
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Thus largeN limit of matrix integral [ DMe~ Nt (M*+3M°) = generating
function of planai3-valent graphs. [Brézin, Itzykson, Parisi, Z. 1978]

or in a dual way, ofriangulationsof 2D surfaces of genus O

[Kazakov ; David ; Kazakov-Kostov-Migdal ; Ambjgrn-Durhuus-Fréhlich '85]

Thus : LargeN limit of matrix integrals=- Counting of planar objects :
maps, triangulations, “alternating” knots and lirjlisZ-J & J-B Z], etc, or
of objects of higher topology ...
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Computational techniques

Consider integral ovell x N Hermitian matrices
:Z::://(jhﬂef$MrV(M):

V(M) a polynomial of degred + 1. For exV3(M) = (3M?+ IM3) and
Va(M) = (M2 + IM?). Note that multi-traces are excluded, for example
(trM?)2.

Integrand and measure are invariant urldé@x) transformations

M — UMUT. Express both in terms @figenvalued\;,---,An of M :

N
7 — / d\: ()\. _)\.)Ze—N zf\'zlvo\i) 7
i|:| IiE! | |

Several ways to treat this integral : saddle point approkona orthogonal
polynomials ; “loop equation” (aka Schwinger-Dyson eqoiali . .
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1. Saddle point approximation
Rewrite
N N
/= dAaiexp| 2 log|Aj —Ai| =N Y V(A
/n p( 3 loghi =4[ ~N3 V( >>

In the largeN limit, if A ~ O(1), both terms in exponential are of ordéf.
Look for the stationary point, i.e. the solution of

N =V ()

To solve this problem, introduce the resolvent

N
o= () = (R &)

13
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Computing its square leads after some algebra to

1

1 1 ,
SH= W<i,j:%_,N R == TRV Pk

with P(x) := %< N, V/(X))(:;\/i/()‘” > a polynomialin x of degreed — 1, i.e.

G2(x) —V'(X)G(x) + %G’(x) +P(x)=0.

(Beware ! Not exact foN finite!) For N large, neglect the /N term=-
quadratic equation faB(x), with yet unknown polynomiaP, hence

G(x) = % (V’(x) N 4P(x))

(minus sign in front of /— dictated by the requirement that for largé
G(X) ~ 1/x.)

In that largeN limit, the A’s form a continuous distribution with density
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p(A) on asupporB, [sdAp(A) =1, andG(x) = fsd“p

For a purely Gaussian potentM(A) = %)\2, Wigner's * semi-circle law” :
P(A) = 3-v/4— A2 on the segmerit € [—2,2)].

For more general potentials, assume f8&b be still a finite segment
[—2&,2a"], in such a way that (*) becomes

2a
2PP/ d“p _V’()\) if A e [—2a,2d"] .

2a/

(P.P.= principal part), expressing that, along its cut,

G(x=*ig) = %V’()\) Fimp(x)  xe[-2da,2a"]. Thus
G(x) = V() — QUX)y/(x+ 2a) (x 2}

where the coefficients of the polynomi@(x) anda’, &’ are determined by
the condition thaG(x) ~ 1/x for large|x|. Q is of degreed — 1. The
solution is unique (under the one-cut assumption).
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Example For the quartic potential (A) = A% + %)\4, by symmetry

ad=a"=:a
1 3 9.2 2 2
G(X) = = (X+gx’) — ( + 2x% 4+ gaf)V/x2 —4a
2 2 2
with a2 the solution of
3ga*+a°—1=0 (EQ&)

which goes to 1 ag — 0 (a limit where we recover Wigner’'s semi-circle
law). From this we extract

P(A) = 1( ; g)\2+ga2)\/4a2 22

and we may compute all invariant quantities like the freegner the
moments

Gap = <%trM2p> - /d)\ AZP (M) .

For exampleG, = (4—a?)a?/3, G4 = (3—a®)a*, etc. All these functions
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of a® are singular as functions gfat the pointy, = —%2 where the two

roots of(E Q&) coalesce. For example the genus 0 free energy

FOg): — m (1/N?)log (53 ) = Jloge — 5. (a2~ 19— a)
_ (2p—1)!
— le(Sg)p ol (p+ 2)! [Tutte 62BIPZ 78

has a power-law singularity

EO) ~ |g—a.|5?
(9) >, 19— 9l

which reflects on the large order behaviour of its series esipa

N—oo

FO(g) =Y fog" ., fa ~ constge| "n7/2.
n=0
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Comments

) Nature of the N2 and of theg expansions, algebraic singularity at
finite gc

1) “Universal” singular behavior afj.

lii) Extension to several cuts, théle of the algebraic curve (cf Eynard).

18
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2. Orthogonal polynomials

/ A P(A) Py (M) VYO = b S

ExpressZ andF in terms of theh,'s, their largen limit, etc.

[Mehta, Bessis, ...]
3. Loop (or Schwinger-Dyson) equations

M (.. e NrV(M)y

and make use of factorization property

1 1
(FrPL&trPy) = (QUrPu (gt Pe) +0(55)
disconnec‘:tred diagrams
= Recover algebraic equation satisfied®), etc.

\
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