Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization gro

Poculte

Conclusion

High order solution of a non-linear Schwinger-Dyson equation.

Marc Bellon Gustavo Lozano Fidel Schaposnik

Cargèse/Carghjese 31 mars 2009

• Physics Letters B, 650:293–297, 2007, arXiv:hep-th/0703185.

Nucl. Phys. B 800:517-526, 2008, arXiv:0801.0727v2 [hep-th]

Marc Bellon. Fidel Schaposnik

Wess-Zumino model

1 Physical problem

Wess-Zumino model Schwinger–Dyson equation

Tools 2

Hopf algebras Renormalization group Mellin transform

Results 3

4 Conclusion

Outline

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou Mellin transform

Results

Conclusion

The fields

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

A four dimensional quantum field theory with:

- a complex field A and a chiral fermionic field ψ .
- a Yukawa coupling $gA\psi\psi$
- a quartic self-interaction of $g^2|A|^4$.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization gro Mellin transform

Results

Conclusion

Non-renormalization

The model has exact cancellation of some divergences among diagrams.

This becomes clearer by the introduction of a non-propagating complex field *F*, which forms a supersymmetry multiplet with *A* and ψ .

- The quartic interaction is replaced by the coupling gFA^2 .
- The three-point functions Aψψ and FA² are never divergent.
- In the massless case, the three fields get the *same wave function renormalization*.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou Mellin transform

Results

Conclusion

Schwinger–Dyson equation

We will solve the Schwinger–Dyson equation graphically depicted by:

The square box designs a sum of 1PI diagrams and defines the propagator through:

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization group Mellin transform

Results

Conclusion

Why this Schwinger–Dyson equation ?

The iteration of this Schwinger–Dyson equation produces a family of diagrams which:

- includes all diagrams with the unique simple loop primitive divergence.
- dominates in a large *N* approximation, since they are reinforced by a *n*! renormalon factor.
- may be subject to compensations between diagrams of different signs after renormalization.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization group Mellin transform

Results

Conclusion

Why this Schwinger–Dyson equation ?

The iteration of this Schwinger–Dyson equation produces a family of diagrams which:

- includes all diagrams with the unique simple loop primitive divergence.
- dominates in a large *N* approximation, since they are reinforced by a *n*! renormalon factor.
- may be subject to compensations between diagrams of different signs after renormalization.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization group Mellin transform

Results

Conclusion

Why this Schwinger–Dyson equation ?

The iteration of this Schwinger–Dyson equation produces a family of diagrams which:

- includes all diagrams with the unique simple loop primitive divergence.
- dominates in a large *N* approximation, since they are reinforced by a *n*! renormalon factor.
- may be subject to compensations between diagrams of different signs after renormalization.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization group Mellin transform

Results

Conclusion

Why this Schwinger–Dyson equation ?

The iteration of this Schwinger–Dyson equation produces a family of diagrams which:

- includes all diagrams with the unique simple loop primitive divergence.
- dominates in a large *N* approximation, since they are reinforced by a *n*! renormalon factor.
- may be subject to compensations between diagrams of different signs after renormalization.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras

Renormalization grou Mellin transform

Results

Conclusion

Renormalization Hopf algebra

The combinatorics of renormalization is expressed in terms of a Hopf algebra.

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

It is a polynomial algebra on one-particle irreducible graphs.

Coproduct:

$$\Delta(-\bigcirc -) = \mathbf{1} \otimes -\bigcirc - + -\bigcirc - \otimes \mathbf{1} + 2 - \bigcirc \otimes -\bigcirc -$$

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras

Renormalization grou Mellin transform

Results

Conclusion

... on Green functions

Introduce the structure constant $a = g^2$ and the "effective structure constant"

For any Green function $\Gamma = \sum_{n} \Gamma_{n} a^{n}$, we have

$$\Delta \Gamma = \sum_{n} \Gamma \ a_{\rm eff}^{n} \otimes \Gamma_{n}$$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras

Renormalization grou Mellin transform

Results

Conclusion

... on Green functions

The preceding form of the coproduct has a number of nice properties:

- It applies to the sums of diagrams generated by a given Schwinger–Dyson equation.
- The same formula applies to products or quotients of Green functions.
- It applies to *a*_{eff} itself.
- *a*_{eff} defines a Hopf algebra homomorphism from the dual of formal diffeomorphisms.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras

Renormalization grou Mellin transform

Results

Conclusion

... on Green functions

The preceding form of the coproduct has a number of nice properties:

- It applies to the sums of diagrams generated by a given Schwinger–Dyson equation.
- The same formula applies to products or quotients of Green functions.
- It applies to *a*_{eff} itself.
- *a*_{eff} defines a Hopf algebra homomorphism from the dual of formal diffeomorphisms.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras

Renormalization group Mellin transform

Results

Conclusion

... on Green functions

The preceding form of the coproduct has a number of nice properties:

- It applies to the sums of diagrams generated by a given Schwinger–Dyson equation.
- The same formula applies to products or quotients of Green functions.
- It therefore applies to a_{eff} itself, since a_{eff} is a product of Green functions.
- *a*_{eff} defines a Hopf algebra homomorphism from the dual of formal diffeomorphisms.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras

Renormalization grou Mellin transform

Results

Conclusion

... on Green functions

The preceding form of the coproduct has a number of nice properties:

- It applies to the sums of diagrams generated by a given Schwinger–Dyson equation.
- The same formula applies to products or quotients of Green functions.
- It applies to *a*_{eff} itself.
- *a*_{eff} defines a Hopf algebra homomorphism from the dual of formal diffeomorphisms.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras

Renormalization group Mellin transform

Results

Conclusion

Renormalization

The algebra homomorphisms from the Hopf algebra of diagrams to $\mathbb C$ form a group for the convolution:

$$f \star g = (f \otimes g) \circ \Delta$$

An important case: the evaluation maps of the Feynman diagram Φ_{p^2} for the exterior impulsion *p*. The renormalization condition is taken at given impulsion p_0^2 :

$$\Phi^R_{p_0^2} = \varepsilon$$

The solution is

$$\Phi^R_{
ho^2} = (\Phi_{
ho^2_0} \circ S) \star \Phi_{
ho^2}$$

 Φ^R has a well defined limit when the regularizations in Φ are removed and, in the massless case, only depends on the ratio p^2/p_0^2 .

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras

Renormalization group Mellin transform

Results

Conclusion

Renormalization group

The renormalization group is a simple consequence of the definition of the renormalized evaluation.

$$\begin{array}{lll} \Phi^{R}_{q^{2}/p_{0}^{2}} & = & (\Phi_{p_{0}^{2}} \circ S) \star \Phi_{q^{2}} \\ & = & (\Phi_{p_{0}^{2}} \circ S) \star \Phi_{p^{2}} \star (\Phi_{p^{2}} \circ S) \star \Phi_{q^{2}} \\ & = & \Phi^{R}_{p^{2}/p_{0}^{2}} \star \Phi^{R}_{q^{2}/p^{2}} \end{array}$$

Changing to the variable $L = \log(q^2/p_0^2)$, we can differentiate to obtain:

$$\frac{\partial}{\partial L} \Phi_L^R = \left. \frac{\partial}{\partial L} \Phi_L^R \right|_{L=0} \star \Phi_L^R$$

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras

Renormalization group Mellin transform

Results

Conclusion

Renormalization group

The renormalization group is a simple consequence of the definition of the renormalized evaluation.

$$\begin{array}{lll} \Phi^{R}_{q^{2}/p_{0}^{2}} & = & (\Phi_{p_{0}^{2}} \circ S) \star \Phi_{q^{2}} \\ & = & (\Phi_{p_{0}^{2}} \circ S) \star \Phi_{p^{2}} \star (\Phi_{p^{2}} \circ S) \star \Phi_{q^{2}} \\ & = & \Phi^{R}_{p^{2}/p_{0}^{2}} \star \Phi^{R}_{q^{2}/p^{2}} \end{array}$$

Changing to the variable $L = \log(q^2/p_0^2)$, we can differentiate to obtain:

$$\frac{\partial}{\partial L} \Phi_L^R = \left. \frac{\partial}{\partial L} \Phi_L^R \right|_{L=0} \star \Phi_L^R$$

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras

Renormalization group Mellin transform

1

Results

Conclusion

Application to Green functions

We can apply the preceding equation to the Green function or its inverse, since we know the action of the coproduct. We introduce $\gamma = \frac{\partial}{\partial L} \Phi_L^R(\Gamma) |_{L=0}$.

$$\frac{\partial}{\partial L} \Phi_L^R(\Gamma) = \sum_n \frac{\partial}{\partial L} \Phi_L^R(\Gamma^{1-3n}) \Big|_{L=0} \Phi_L^R(\Gamma_n)$$
$$= \sum_n \gamma(1-3n) \Phi_L^R(\Gamma_n) = \gamma \left(1-3a\frac{\partial}{\partial a}\right) \Phi_L^R(\Gamma).$$

We have a similar result for Γ^-

$$\frac{\partial}{\partial L} \Phi_L^R(\Gamma^{-1}) = \gamma \left(-1 - 3a \frac{\partial}{\partial a}\right) \Phi_L^R(\Gamma^{-1}).$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras

Renormalization group Mellin transform

Results

Conclusion

Application to Green functions

We can apply the preceding equation to the Green function or its inverse, since we know the action of the coproduct. We introduce $\gamma = \frac{\partial}{\partial L} \Phi_L^R(\Gamma) |_{L=0}$.

$$\begin{aligned} \frac{\partial}{\partial L} \Phi_L^R(\Gamma) &= \sum_n \left. \frac{\partial}{\partial L} \Phi_L^R(\Gamma^{1-3n}) \right|_{L=0} \Phi_L^R(\Gamma_n) \\ &= \sum_n \gamma(1-3n) \Phi_L^R(\Gamma_n) = \gamma \left(1 - 3a \frac{\partial}{\partial a} \right) \Phi_L^R(\Gamma). \end{aligned}$$

We have a similar result for Γ^{-1}

$$\frac{\partial}{\partial L} \Phi_L^R(\Gamma^{-1}) = \gamma \left(-1 - 3a \frac{\partial}{\partial a} \right) \Phi_L^R(\Gamma^{-1}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras

Renormalization group

Mellin transform

Results

Conclusion

Return to Schwinger–Dyson equation

Evaluate the diagram with two renormalized propagators

• At order *n* in *a*, the propagator is a polynomial of order *n* in $L = \log(p^2/p_0^2)$.

- $\Phi_L^R(\Gamma^{-1}) = \sum_n \gamma_n L^n / n!$
- Generating function for all powers of *L* by considering propagator (*p*²)^{x-1}

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras

Renormalization grou

Mellin transform

Results

Conclusion

Generating functions

The evaluation of the diagram

$$\Gamma(q^2, x, y) = + \frac{g^2}{8\pi^4} \int d^4 \rho(\rho^2)^{x-1} [(q-\rho)^2]^{y-1}$$

= $+ \frac{g^2}{8\pi^2} (q^2)^{x+y} \frac{\Gamma(-x-y)\Gamma(1+x)\Gamma(1+y)}{\Gamma(2+x+y)\Gamma(1-x)\Gamma(1-y)}$

The derivative with respect to $\log q^2$

$$H(x,y) = -a \frac{\Gamma(1-x-y)\Gamma(1+x)\Gamma(1+y)}{\Gamma(2+x+y)\Gamma(1-x)\Gamma(1-y)}$$
$$= \sum_{p,q} h_{p,q} x^p y^q$$

Final expression:

$$\gamma = \sum_{p,q} h_{p,q} \gamma_p \gamma_q$$

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras Renormalization group

Mellin transform

Results

Conclusion

"Exact" solution

$$\begin{split} \gamma(a) &= a - 2a^2 + 14a^3 + \left(-160 + 16\,\zeta(3)\right)a^4 \\ &+ \left(2444 - 328\,\zeta(3)\right)a^5 + \left(-45792 + 7056\,\zeta(3) + 2016\,\zeta(5)\right)a^6 \\ &+ \left(1005\,480 - 169\,152\,\,\zeta(3) - 70\,896\,\,\zeta(5) + 8960\,\,\zeta^2(3)\right)a^7 \\ &+ \left(-25\,169\,760 + 4\,509\,408\,\,\zeta(3) + 2\,199\,840\,\,\zeta(5) + 564\,480\,\,\zeta(7) - 390\,400\,\,\zeta^2(3)\right)a^8 \\ &+ \left(705\,321\,200 - 132\,548\,640\,\,\zeta(3) - 69\,922\,848\,\,\zeta(5) - 29\,005\,632\,\,\zeta(7) \\ &+ 14\,193\,504\,\,\zeta^2(3) + 6\,397\,056\,\,\zeta(3)\,\,\zeta(5)\right)a^9 \\ &+ \left(-21\,841\,420\,384 + 4\,261\,047\,424\,\,\zeta(3) + 2\,354\,993\,856\,\,\zeta(5) + 1\,194\,909\,696\,\,\zeta(7) \\ &+ \frac{858\,457\,600}{3}\,\,\zeta(9) - 512\,441\,536\,\,\zeta^2(3) - 383\,788\,416\,\,\zeta(3)\,\,\zeta(5) + \frac{49\,556\,480}{3}\,\,\zeta^3(3)\right)a^{10} \\ &+ \left(740\,194\,188\,032 - 148\,784\,410\,432\,\,\zeta(3) - 84\,779\,661\,888\,\,\zeta(5) - 47\,818\,582\,272\,\,\zeta(7) \\ &- \frac{58\,999\,853\,440}{3}\,\,\zeta(9) + 19\,225\,297\,088\,\,\zeta^2(3) + 17\,828\,697\,216\,\,\zeta(3)\,\,\zeta(5) + 1\,829\,076\,480\,\,\zeta^2(5) \\ &+ 3\,838\,602\,240\,\,\zeta(3)\,\,\zeta(7) - \frac{3\,432\,237\,056}{3}\,\,\zeta^3(3)\right)a^{11} \\ &+ \left(-27\,243\,674\,154\,368 + 5\,610\,375\,120\,768\,\,\zeta(3) + 3\,266\,192\,145\,024\,\,\zeta(5) \\ &+ 1\,961\,976\,190\,464\,\,\zeta(7) + 1\,019\,076\,124\,160\,\,\zeta(9) + 230\,546\,534\,400\,\,\zeta(11) \\ &- 760\,702\,109\,184\,\,\zeta^2(3) - 788\,057\,929\,728\,\,\zeta(3)\,\zeta(5) - 141\,297\,435\,648\,\,\zeta^2(5) \\ &- 297\,887\,016\,960\,\,\zeta(3)\,\zeta(7) + 59\,550\,068\,736\,\,\zeta^3(3) + 34\,512\,334\,848\,\,\zeta^2(3)\,\zeta(5)\,\right)a^{12} + \cdots \end{split}$$

◆□> < □> < 三> < 三> < □> < □>

Numeric solution

$$\begin{split} \gamma(a) &= a-2\ a^2+14\ a^3-140.767089549446491434\ a^4\\ &+2049.72533576365307439\ a^5-35219.8401369368689507\ a^6\\ &+741582.310142069315875\ a^7-1.74630317191742523615\times10^7\ a^8\\ &+4.72719801334671229530\times10^8\ a^9-1.39759545666280992694\times10^{10}\ a^{10}\\ &+4.60146704077682933925\times10^{11}\ a^{11}-1.63220296094286720854\times10^{13}\ a^{12}\\ &+6.32651854893093835423\times10^{14}\ a^{13}-2.61715263667021333524\times10^{16}\ a^{14}\\ &+1.16791189443603376676\times10^{18}\ a^{15}-5.52247245848724267096\times10^{19}\ a^{16} \end{split}$$

 $\begin{array}{l} +8.4053176185682527526\times 10^{454}\ a^{195}-4.9339110330514367678\times 10^{457}\ a^{196}\\ +2.9112362346747106444\times 10^{460}\ a^{197}-1.7263592738217495952\times 10^{463}\ a^{198}\\ +1.0289894774008300571\times 10^{466}\ a^{199}-6.1636327768018535021\times 10^{468}\ a^{200}\\ +3.7107878544109289292\times 10^{471}\ a^{201}+\cdots \end{array}$

Solution of a Schwinger–Dyson equation

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou Mellin transform

Results

Conclusion

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization gro

Results

Conclusion

Properties of the numerical γ

- With $\gamma = \sum \gamma_n a^n$, we have
 - $\gamma_n \simeq -(3n+2)\gamma_{n-1}$.
 - The singularity in $+\frac{1}{3}$ of the Borel transform is not a pole.

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras Renormalization grou Mellin transform

Results

Conclusion

Crossroads

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

- "Physical" renormalization condition versus Minimal Subtraction.
- Calan–Symanzik versus Wilson renormalization group.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras Renormalization grou

Results

Conclusion

• "Physical" renormalization condition versus Minimal Subtraction.

Calan–Symanzik versus Wilson renormalization group.

Crossroads

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou Mellin transform

Results

Conclusion

Further extensions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

• Obtain proofs, maybe in the form of differential equations.

• Obtain some more propagator–coupling duality.

- Effect of additional terms in Schwinger–Dyson equation.
- Case with renormalized vertex function.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou Mellin transform

Results

Conclusion

Further extensions

- Obtain proofs, maybe in the form of differential equations.
- Obtain some more propagator-coupling duality.
- Effect of additional terms in Schwinger–Dyson equation.
- Case with renormalized vertex function.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou Mellin transform

Results

Conclusion

Further extensions

- Obtain proofs, maybe in the form of differential equations.
- Obtain some more propagator-coupling duality.
- Effect of additional terms in Schwinger–Dyson equation.
- Case with renormalized vertex function.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou Mellin transform

Results

Conclusion

Further extensions

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

- Obtain proofs, maybe in the form of differential equations.
- Obtain some more propagator-coupling duality.
- Effect of additional terms in Schwinger–Dyson equation.
- · Case with renormalized vertex function.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess–Zumino model Schwinger–Dyson equation

Tools

Hopf algebras Renormalization gro

Results

Conclusion

• CEFIMAS, IAM-CONICET, UNLP (Argentina).

- Gustavo Lozano and Fidel Schaposnik.
- CNRS
- David Broadhurst, Dirk Kreimer, Karen Yeats, Walter Van Suijlekom.
- The organizers.

Thanks

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou

Conclusion

Thanks

- CEFIMAS, IAM-CONICET, UNLP (Argentina).
- Gustavo Lozano and Fidel Schaposnik.
- CNRS
- David Broadhurst, Dirk Kreimer, Karen Yeats, Walter Van Suijlekom.
- The organizers.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou

Results

Conclusion

Thanks

- CEFIMAS, IAM-CONICET, UNLP (Argentina).
- Gustavo Lozano and Fidel Schaposnik.
- CNRS
- David Broadhurst, Dirk Kreimer, Karen Yeats, Walter Van Suijlekom.
- The organizers.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou

Results

Conclusion

Thanks

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

- CEFIMAS, IAM-CONICET, UNLP (Argentina).
- Gustavo Lozano and Fidel Schaposnik.
- CNRS
- David Broadhurst, Dirk Kreimer, Karen Yeats, Walter Van Suijlekom.
- The organizers.

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Physical problem

Wess-Zumino model Schwinger-Dyson equation

Tools

Hopf algebras Renormalization grou

Results

Conclusion

- CEFIMAS, IAM-CONICET, UNLP (Argentina).
- Gustavo Lozano and Fidel Schaposnik.
- CNRS
- David Broadhurst, Dirk Kreimer, Karen Yeats, Walter Van Suijlekom.
- The organizers.

Thanks

▲□▶▲□▶▲□▶▲□▶ 三回日 のQ@

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Calculation of Broadhurst and Kreimer

In dimension four, the angular average of $1/(p-k)^2$ is the minimum of $1/p^2$ and $1/k^2$.

$$G(s)^{-1} = \int_0^s \frac{G(t)}{s} dt + \int_s^\infty \frac{G(t)}{t} dt$$
$$\frac{\partial}{\partial s} G(s)^{-1} = \frac{1}{s^2} \int_0^s G(t) dt$$

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 (日)

 (日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)
 </p

Marc Bellon, Gustavo Lozano, Fidel Schaposnik

Development in poles

$$H(x,y) = -a(1+xy)(\frac{1}{1+x} + \frac{1}{1+y} - 1) - a\frac{xy}{1-x-y}$$
+poles farther