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The fields

A four dimensional quantum field theory with:
• a complex field A and a chiral fermionic field ψ.
• a Yukawa coupling gAψψ
• a quartic self-interaction of g2|A|4.
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Non-renormalization

The model has exact cancellation of some divergences among
diagrams.
This becomes clearer by the introduction of a non-propagating
complex field F , which forms a supersymmetry multiplet with A
and ψ.

• The quartic interaction is replaced by the coupling gFA2.
• The three-point functions Aψψ and FA2 are never

divergent.
• In the massless case, the three fields get the same wave

function renormalization.
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Schwinger–Dyson equation

We will solve the Schwinger–Dyson equation graphically
depicted by:

= −a

The square box designs a sum of 1PI diagrams and defines
the propagator through:

=
(

+
)−1

= − + + · · ·
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Why this Schwinger–Dyson
equation ?

The iteration of this Schwinger–Dyson equation produces a
family of diagrams which:

• includes all diagrams with the unique simple loop primitive
divergence.

• dominates in a large N approximation, since they are
reinforced by a n! renormalon factor.

• may be subject to compensations between diagrams of
different signs after renormalization.
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Renormalization Hopf algebra

The combinatorics of renormalization is expressed in terms of
a Hopf algebra.
It is a polynomial algebra on one-particle irreducible graphs.

Coproduct:

∆( ) = 1⊗ + ⊗ 1 + 2 ⊗
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. . . on Green functions

Introduce the structure constant a = g2 and the “effective
structure constant”

aeff = g2

2

3

For any Green function Γ =
∑

n Γnan, we have

∆Γ =
∑

n

Γ an
eff ⊗ Γn
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. . . on Green functions

The preceding form of the coproduct has a number of nice
properties:

• It applies to the sums of diagrams generated by a given
Schwinger–Dyson equation.

• The same formula applies to products or quotients of
Green functions.

• It applies to aeff itself.
• aeff defines a Hopf algebra homomorphism from the dual

of formal diffeomorphisms.
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. . . on Green functions

The preceding form of the coproduct has a number of nice
properties:

• It applies to the sums of diagrams generated by a given
Schwinger–Dyson equation.

• The same formula applies to products or quotients of
Green functions.

• It therefore applies to aeff itself, since aeff is a product of
Green functions.

• aeff defines a Hopf algebra homomorphism from the dual
of formal diffeomorphisms.
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Renormalization

The algebra homomorphisms from the Hopf algebra of
diagrams to C form a group for the convolution:

f ? g = (f ⊗ g) ◦∆

An important case: the evaluation maps of the Feynman
diagram Φp2 for the exterior impulsion p.
The renormalization condition is taken at given impulsion p2

0:

ΦR
p2

0
= ε

The solution is
ΦR

p2 = (Φp2
0
◦ S) ? Φp2

ΦR has a well defined limit when the regularizations in Φ are
removed and, in the massless case, only depends on the ratio
p2/p2

0.
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Renormalization group

The renormalization group is a simple consequence of the
definition of the renormalized evaluation.

ΦR
q2/p2

0
= (Φp2

0
◦ S) ? Φq2

= (Φp2
0
◦ S) ? Φp2 ? (Φp2 ◦ S) ? Φq2

= ΦR
p2/p2

0
? ΦR

q2/p2

Changing to the variable L = log(q2/p2
0), we can differentiate to

obtain:
∂

∂L
ΦR

L =
∂

∂L
ΦR

L

∣∣∣∣
L=0

? ΦR
L
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Application to Green functions

We can apply the preceding equation to the Green function or
its inverse, since we know the action of the coproduct.
We introduce γ = ∂

∂L ΦR
L (Γ)

∣∣
L=0.

∂

∂L
ΦR

L (Γ) =
∑

n

∂

∂L
ΦR

L (Γ1−3n)

∣∣∣∣
L=0

ΦR
L (Γn)

=
∑

n

γ(1− 3n)ΦR
L (Γn) = γ

(
1− 3a

∂

∂a

)
ΦR

L (Γ).

We have a similar result for Γ−1

∂

∂L
ΦR

L (Γ−1) = γ

(
−1− 3a

∂

∂a

)
ΦR

L (Γ−1).
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Return to Schwinger–Dyson
equation

Evaluate the diagram with two renormalized propagators
• At order n in a, the propagator is a polynomial of order n in

L = log(p2/p2
0).

• ΦR
L (Γ−1) =

∑
n γnLn/n!

• Generating function for all powers of L by considering
propagator (p2)x−1
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Generating functions
The evaluation of the diagram

Γ(q2, x , y) = +
g2

8π4

∫
d4p(p2)x−1[(q − p)2]y−1

= +
g2

8π2 (q2)x+y Γ(−x − y)Γ(1 + x)Γ(1 + y)

Γ(2 + x + y)Γ(1− x)Γ(1− y)

The derivative with respect to log q2

H(x , y) = −a
Γ(1− x − y)Γ(1 + x)Γ(1 + y)

Γ(2 + x + y)Γ(1− x)Γ(1− y)

=
∑
p,q

hp,qxpyq

Final expression:
γ =

∑
p,q

hp,qγpγq
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“Exact” solution
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Numeric solution
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Properties of the numerical γ

With γ =
∑
γnan, we have

• γn ' −(3n + 2)γn−1.
• The singularity in + 1

3 of the Borel transform is not a pole.
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Crossroads

• “Physical” renormalization condition versus Minimal
Subtraction.

• Calan–Symanzik versus Wilson renormalization group.
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Further extensions

• Obtain proofs, maybe in the form of differential equations.
• Obtain some more propagator–coupling duality.
• Effect of additional terms in Schwinger–Dyson equation.
• Case with renormalized vertex function.
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Calculation of Broadhurst and
Kreimer

In dimension four, the angular average of 1/(p − k)2 is the
minimum of 1/p2 and 1/k2.

G(s)−1 =

∫ s

0

G(t)
s

dt +

∫ ∞
s

G(t)
t

dt

∂

∂s
G(s)−1 =

1
s2

∫ s

0
G(t) dt
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Development in poles

H(x , y) = −a(1+xy)(
1

1 + x
+

1
1 + y

−1)−a
xy

1− x − y
+poles farther from origin
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