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Introduction: why renormalization in configuration spaces?

The renormalization on configuration space has a direct
geometric interpretation allowing generalization on manifolds.
The Epstein-Glaser renormalization is done for the products of
fields, which also facilitates the generalization of the perturbation
theory on manifolds.

Still this has the disadvantage to be rather complicated technically,
especially for concrete calculations.
One of the results in this talk is an analog of the Epstein–Glaser
approach, which is entirely stated in terms of renormalization of
integrals of functions. This approach then has the additional
advantage to be independent of concrete models of quantum
fields like the ϕ4–theory or quantum electrodynamics etc.
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Preliminary definition of renormalization maps


algebra On of

non globally defined
smooth functions

 Rn→


space of
globally defined

distributions



On is an algebra of translation invariant functions of n vector arguments

and these functions one can think of as coming from Feynman diagrams.
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Preliminary definition of renormalization maps

We define a sequence of algebras O2, O3, . . . , On, . . .

On = Span

{
∏

16 j <k 6n
Gjk
(
xj −xk

)
: Gjk

(
x
)
∈ O2

}
.

x = (x1, . . . ,xD) ∈ E ≡ RD

O2 ⊆ C ∞
(
E
∖
{0}
)

– “the algebra of propagators”.

Assumption: Polynomials · On ⊆ On , ∂xµ
k

On ⊆ On (∂xµ
k

= ∂

∂xµ
k

) .

A main example: O2 =
{ p(x)

(x2)N
: p(x) – polynomial, N ∈ N

}
,

On =

{
p(x1−xn, . . . ,xn−1−xn)(

∏
j <k

(xj −xk )2
)N : p – polynomial, N ∈ N

}
.



Introduction: why renormalization in configuration spaces? Theory of renormalization maps Anomalies in QFT and cohomologies of configuration spaces Conclusions

Preliminary definition of renormalization maps

Another remark: the algebra On consists of translation invariant
functions that are regular on the so called configuration space

Fn =
{

(x1, . . . ,xn) ∈ En : xj 6= xk (∀j 6= k)
}

.

From the point of view of the algebraic geometry: On is the ring of
regular functions on the quasi-affine manifold that is the complement
of union of quadrics

Fn;C =
{

(x1, . . . ,xn) ∈ CDn : (xj −xk )2 6= 0 (∀j 6= k)
}

.
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Preliminary definition of renormalization maps

Renormalization maps are linear maps:

Rn : On → D ′
(
E×n/E) , n = 2,3, . . . .

They are supposed to satisfy the following axiomatic conditions (r1)–(r4).

(r1) Permutation symmetry:

Rn
(
σ
∗G
)

= σ
∗Rn(G) (∀σ ∈ Sn),

where σ∗F(x1, . . . ,xn) := F(xσ1 , . . . ,xσn ).

Convention: for every S ⊂
finite

N we shall define an algebra OS
∼= On (n = |S|):

OS = Span

{
∏

j,k ∈S ; j <k
Gjk
(
xj −xk

)
: Gjk

(
x
)
∈ O2

}
.

Then RS : OS → D ′
(
ES
/
E
)
, RS(G) := (σ∗)−1Rn

(
σ∗G

)
,

σ : {1, . . . ,n} ∼= S.
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Preliminary definition of renormalization maps

(r2) Preservation of filtrations:

Scaling degree of RnG 6 Scaling degree of G .

The scaling degree gives the rate of the singularity for coinciding
arguments.

(r3) Commutativity between the renormalization maps and the
multiplication by polynomials:

Rn
(
pG
)

= p RnG, p = p(x1−xn, . . . ,xn−1−xn) is a polynomial.
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Preliminary definition of renormalization maps

Conventions:

Let P be a partition of the set S = {j1, . . . , jn}:(
•
j1
•
j2
•
j3

)
· · ·
(
· · ·•

jk
· · ·
)
· · ·
(
· · ·•

jn

)
⇔

{
equivalence relation
∼P on S.

We set: FP =
{

(xj1 , . . . ,xjn ) ∈ ES : xj 6= xk (∀j �P k)
}

.

For GS = ∏
j,k ∈S
j <k

Gjk
(
xj −xk

)
we set: GS = GP · ∏

S ′∈P
GS ′ ,

where
GP = ∏

j�P k

j <k

Gjk
(
xj −xk

)
, GS ′ = ∏

j,k ∈S ′
j <k

Gjk
(
xj −xk

)
.

(r4) For every proper S–partition P: RSGS

∣∣∣
FP

= GP · ∏
S ′∈P

RS ′GS ′ .

In particular: RnG
∣∣∣
Fn

= G.
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Preliminary definition of renormalization maps

Summary:

(r1) Permutation symmetry.

(r2) Preservation of the filtrations.

(r3) Commutativity with the multiplication by polynomials.

(r4) Recursive relation: RSGS

∣∣∣
FP

= GP · ∏
S ′∈P

RS ′GS ′ .
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Application to Euclidean perturbative QFT

We need to define products of interactions I1(x1) · · · In(xn) as quadratic
forms, where Ik (x) = Wick polynomial of ϕ(x) and its derivatives ∂rϕ(x).

Decomposing by the Wick theorem

I1(x1) · · · In(xn) = ∑
A1,...,An

GA1,...,An (x1, . . . ,xn) :ΦA1(x1) · · ·ΦAn (xn): , we set:

(
I1(x1) · · · In(xn)

)ren
= ∑

A1,...,An

Rn
(
GA1,...,An

)
(x1, . . . ,xn) :ΦA1(x1) · · ·ΦAn (xn) : .

A convenient formula:

I1(x1) · · · In(xn) = ∏
j <k

exp

(
∑
r,s

Cr,s
(
xj −xk

) ∂

∂ϕr(xj)

∂

∂ϕr(xk )

)
: I1(x1) · · · In(xn) : .

ϕr(x) := ∂
r
xϕ(x), Cr,s

(
x1−x2

)
:= ∂

r
x1

∂
s
x2
〈ϕ(x1)ϕ(x2)〉 .
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Preliminary definition of renormalization maps

Again:

(r1) Permutation symmetry.

(r2) Preservation of the filtrations.

(r3) Commutativity with the multiplication by polynomials.

(r4) Recursive relation: RSGS

∣∣∣
FP

= GP · ∏
S ′∈P

RS ′GS ′ .

Since ES
∖
{0} =

⋃
P is a proper

S–partition

FP then by (r4) we have a linear map:

•
RS : OS →D ′temp

(
ES∖{0}),

depending on the renormalization maps of lower degree.
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Primary renormalization maps

Then to construct Rn we have to compose
•
Rn with a linear map

Pn : D ′temp

(
E×n∖{0})→D ′

(
E×n) ,

Rn = Pn ◦
•
Rn ,

On

•
Rn−→D ′temp

(
E×n∖{0}) Pn−→D ′

(
E×n) .

Axiomatic conditions for Pn:

(p1) Pnu
∣∣
E×n

∖
{0} = u, i.e. Pn makes extension of distributions.

(p2) Preservation of the filtrations.
(p3) Orthogonal invariance.
(p4) Commutativity with the multiplication by polynomials.
(p5) If u(x) ∈D ′

(
E×(n−m))

, supp u = {0} and v(y) ∈ D ′temp

(
E×m

∖
{0}
)
:

Pn(u⊗ v) = u⊗Pmv .
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Change of renormalization

If {Pn}∞
n=2 (⇒ {Rn}∞

n=2) and {P ′n}∞
n=2 (⇒ {R ′n}∞

n=2) – two renormalizations:

R ′S GS = ∑
P is a

S–partition

(
RS/P⊗ idD ′P,0

)
◦n.f.P

(
GP ∏

S ′∈P

QS ′ GS ′

)
.

Here: QS =
(
P ′S−PS

)
◦
•
RS
′ : OS →D ′S,0 := D ′

[
0 ∈ ES

]
,

S/P := {max S ′ : S ′ ∈P}.
The change of the renormalization is characterized by a sequence
{Qn : On→D ′n,0}, Q1 = 1, satisfying the properties:

(c1) Permutation symmetry.
(c2) Preservation of the filtrations.
(c3) Commutativity with multiplications by polynomials.

The set of all such systems of linear maps form a group with a multiplication

Q′′S GS = ∑
P is a

S–partition

(
Q′S/P⊗ idD ′P,0

)
◦n.f.P

(
GP ∏

S ′∈P

QS ′ GS ′

)
.
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Change of renormalization

A key role in the derivation of the representation of the universal
renormalization group by formal diffeomorphisms on the couplings
play the formulas

R ′S GS = ∑
P is a

S–partition

(
RS/P⊗ idD ′P,0

)
◦n.f.P

(
GP ∏

S ′∈P

QS ′ GS ′

)
,

and

I1(x1) · · · In(xn) = ∏
16 j <k 6n

exp

(
∑
r,s

Cr,s
(
xj −xk

) ∂

∂ϕr(xj)

∂

∂ϕr(xk )

)
× : I1(x1) · · · In(xn) : .
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Cohomological equations

The source of the anomalies in QFT is the noncommutativity
between the renormalization maps and the action of the linear
partial differential operators:[

A,Rn
]
G ≡ ARn(G)−Rn(AG) 6= 0

(A – linear partial differential operator).

By construction:
[
p,Rn

]
= 0.

⇒ what remains as a source for the anomalies are the commutators

ωn;ξ :=
[
∂xξ ,Rn

]
(=

[
∂xµ

k
,Rn
]

), ξ = (k ,µ) .
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Cohomological equations

Applying the main formula

Rn = Pn ◦
•
Rn .

to ωn;ξ =
[
∂xξ ,Rn

]
we obtain a decomposition,

ωn;ξ = γn;ξ +
•
ωn;ξ (n > 2), ω2;ξ ≡ γ2;ξ ,

γn;ξ :=
[
∂xξ ,Pn

]
◦
•
Rn (n > 2) ,

•
ωn;ξ := Pn ◦

[
∂xξ ,

•
Rn
]

(n > 2) ,

where
•
ωn;ξ are determined by the recursion and

γn;ξ : On→D ′n,0 = D ′
[
0 ∈ En

/
E
]

are simpler linear maps.

Then:
[
∂xξ ,γ2;η

]
−
[
∂xη ,γ2;ξ

]
= 0 ,[

∂xξ ,γn;η

]
−
[
∂xη ,γn;ξ

]
= −

[
∂xξ ,Pn

]
◦
[
∂xη ,

•
Rn
]

+
[
∂xη ,Pn

]
◦
[
∂xξ ,

•
Rn
]

(n > 2) .
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Theorem.

Let n > 2 and we have a system of primary renormalization maps
P2, P3, . . . , Pn

(which therefore determine renormalization maps R2, R3, . . . , Rn).

Let {γn;ξ}ξ be defined by P2, P3, . . . , Pn and {γ ′n;ξ
}ξ be a solution of[

∂xξ ,γn;η

]
−
[
∂xη ,γn;ξ

]
= −

[
∂xξ ,Pn

]
◦
[
∂xη ,

•
Rn
]

+
[
∂xη ,Pn

]
◦
[
∂xξ ,

•
Rn
]
,

which differs from {γn;ξ}ξ by an exact solution:

γ
′
n;ξ
− γn;ξ =

[
∂xξ ,Qn

]
(ξ = 1, . . . ,D(n−1)),

for some linear map Qn : On→D ′n,0 .

Then there exists a primary renormalization map P ′n , which together
with P2, . . . , Pn−1 determines a system of renormalization maps
R2, . . . , Rn−1 and R ′n and a primary renormalization cocycle
coinciding with {γ ′n;ξ

}ξ.
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Reduction of the cohomological equations

An important property of γn;ξ:
[
xη,γn;ξ

]
= 0.

It follows then that γn;ξ has the following form

γn;ξ(G) = ∑
r

(−1)|r|

r!
Γn;ξ

(
xr G

)
δ
(r)(x),

where Γn;ξ ∈ O•n :=
{

Γ ∈ O′n : ∃M s.t. Γ
(
G
)

= 0 if Sc.d.G 6 M
}

.

The correspondence γn;ξ ↔ Γn;ξ is one–to–one.[
∂xη ,γn;ξ

]
↔ −Γn;ξ ◦∂xη =: ∂xηΓn;ξ.

Organizing Γn;ξ into: Γ n = ∑ξ Γn;ξ dxξ ∈ Ω1
(
O•n
)

:= O•n ⊗Λ1R :

d Γ 2 = 0 , d Γ n =
n−1

∑
m=2

Γ n−m+1
◦
∧ Γ m (n > 2) ,

(
Γ n−m+1

◦
∧ Γ m

)(
GS
)

= ∑
S′(S

|S′ |=m

∑
r′

1
r′!

Γ S/S′

(
∂

r′
x′GP(S′)

∣∣∣x′ = 0

)
∧ Γ S′

(
x′r
′
GS′
)
.
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Cohomological analysis of renormalization

We have a natural duality:

H1(O•n) ∼= (
HD(n−1)−1(On

))′
,

Recall that On = the algebra of regular functions on:

Fn;C =
{

(x1, . . . ,xn) ∈ CDn : (xj −xk )2 6= 0 (∀j 6= k)
}

.

And so, H1
(
O•n
) ∼= (

HD(n−1)−1
DR

(
Fn;C

/
CD
))′

.

If we work instead of with On with C ∞
(
Fn
/
E
)

then:

H1
(

C ∞
(
Fn
/
E
)•) ∼= (

HD(n−1)−1
DR

(
Fn
/
E
))′

= 0 for n > 3 .

Idea: look for an intermediate differential–algebraic extension:

On ⊆ Õn ⊆ C ∞
(
Fn
/
E
)
,

which would trivialize the cohomologies: HD(n−1)−1
(
Õn
)

= 0 .
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The two–dimensional case

Introducing (x1,x2)↔ (z,w): z := x1 + i x2 and w := x1− i x2 :

On
∼= Q

[
z1, . . . ,zn−1

][(
∏

j
zj

)−1(
∏
j <k

(zj − zk )
)−1]

⊗ Q
[
w1, . . . ,wn−1

][(
∏

j
wj

)−1(
∏
j <k

(wj −wk )
)−1]

Using Q
[
z1, . . . ,zn−1

]
⊂ Multiple Polylogs

(
z1, . . . ,zn−1

)
we set:

Õn =(
Multiple Polylogs

(
z1, . . . ,zn−1

)
⊗ Multiple Polylogs

(
w1, . . . ,wn−1

))Monod–
romy

This requires an extension: Q ⊂ Ring of multiple zeta values.

Problem: Q
[
x1, . . . ,xn−1

][(
∏
j

x2
j

)−1(
∏

j <k
(xj −xk )2

)−1] ?
⊂ Õn.
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A strategy for solving the cohomological equations

Recall: Γ n = ∑ξ Γn;ξ dxξ, where Γn;ξ : On→ R,

γn;ξ :=
[
∂xξ ,Pn

]
◦
•
Rn = ∑

r

(−1)|r|

r!

(
Γn;ξ ◦xr)

δ
(r)(x) .

These linear functionals Γn;ξ satisfy the cohomological equations:

d Γ 2 = 0 ,

d Γ n = Fn
[
Γ 1, . . . ,Γ n−1

]
=

n−1

∑
m=2

Γ n−m+1
◦
∧ Γ m (n > 2) .

Assume:

∃ Kn : ΩD(n−1)−1(Õn
)
→ΩD(n−1)−2(Õn

)
, Kn ◦ d +d ◦ Kn = id .

Then a solution of a cohomological equations is:

Γ n = Fn ◦ Kn .
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Conclusions

The renormalization in configuration spaces provides a geometric
insight to the problem what are the transcendental extensions,
which we need for the function spaces that would be appropriate
for the description of the correlation functions in perturbative QFT.

Conjecture: the coefficients of the beta functions in any
perturbative QFT on even space–time dimensions are multiple
zeta values.
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