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OPE vertex algebras “Feynman rules” for vertex operators

Different approaches to QFT:

Path-integral: Z[j] =
∫

dφ exp(−iS/~ + 〈j, φ〉). Intuitive,
easy to remember, relation to statistical mechanics
(t → iτ ), ”classical mathematics” tools. But: difficult to
make rigorous (→ perturbation theory).
S-matrix: Clear-cut relation to scattering experiments,
perturbative formulation, graphical representation. But:
Not first principle, not appropriate in curved space, bound
states?
Wightman’s or other axioms: Mathematically rigorous,
conceptually clean. But: Not constructive, no interesting
examples in 4 dimensions.
This talk: New formulation in terms of OPE/consistency
conditions. Easy to remember, mathematically rigorous,
constructive, conceptually clean, works on manifolds. But:
Only short distance physics.
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Main tool in my approach: OPE

General formula: [Wilson, Zimmermann 1969, ..., S.H. 2006]

〈φa1
(x1) · · ·φan(xn)〉Ψ

∼
∑

φb

Cb
a1...an

(x1, . . . , xn)
︸ ︷︷ ︸

OPE−coefficients↔ structure“constants′′

〈φb(xn)〉Ψ

Physical idea: Separate the short distance regime of
theory (large ”energies”) from the energy scale of the state
(small) E4 ∼ 〈ρ〉Ψ.

Application: OPE-coefficients may be calculated within
perturbation theory (Yang-Mills-type theories) →
applications deep inelastic scattering in QCD.

Stefan Hollands Cargese 2009



OPE vertex algebras “Feynman rules” for vertex operators

Axiomatization of QFT

I propose to axiomatize quantum field theory as a collection of
fields (vectors in an abstract vector space V ) and operator
product coefficients C(x1, . . . , xn) : V ⊗ · · · ⊗ V → V , each of
with is an analytic function on (RD)n \ {diagonals}, subject to

Covariance

Local (anti-) commutativity

Analyticity (Euclidean framework)

Consistency (Associativity)

Hermitian adjoint

Consequences:

New intrinsic formulation of perturbation theory

Constructive tool
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Considering the product of quantum fields at three different
spacetime points, associativity of the field operators,
φa(x1) (φb(x2)φc(x3)) = (φa(x1)φb(x2)) φc(x3), yields the
consistency condition

∑

c

Ce
ac(x1, x3)C

c
bd(x2, x3) =

∑

c

Cc
ab(x1, x2)C

e
cd(x2, x3)

on domain D3 = {r12 < r23 < r13}.

Idea: Elevate the OPE to an axiom of QFT, i.e. define a
QFT by a set of coefficients Cc

ab(x, y) satisfying the
consistency condition (among other axioms)
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Mathematical formulation of the consistency condition:

Postulate that

C(x2, x3)
(
C(x1, x2) ⊗ id

)
= C(x1, x3)

(
id ⊗ C(x2, x3)

)
,

Here, we view C(x1, x2) abstractly as a mapping V ⊗ V → V
(”index-free notation”), where V is the space of all composite
fields of the given theory. The above equation is valid in the
sense of analytic functions on domain D3 = {r12 < r23 < r13}.

Key Idea : The mappings C(x1, x2, . . . ) define (and hence
determine) the quantum field theory!

Coherence theorem: All ”higher order” C ’s and consistency
conditions follow from this one. (Analogy (AB)C = A(BC)
implies ”higher associativity” conditions such as
(AB)(CD) = (A(BC))D etc. in ordinary algebra).
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Perturbation theory

Suppose we have a family of QFT’s depending on parameter:

Coupling parameter: λ.
’t Hooft limit: ǫ = 1/N .
Classical limit: ~-expansion.

Expand OPE-coefficients:

Ci(x1, x2) :=
di

dλi
C(x1, x2;λ)

∣∣∣∣
λ=0

.

Then Ci should satisfy order by order version of consistency
condition. Lowest order condition determines higher order
ones.

=⇒ Conditions have formulation in terms of Hochschild
cohomology.
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Idea:

Express perturbative consistency condition in term of
differential. Let

fn(x1, . . . , xn) : V ⊗ · · · ⊗ V → V, (x1, . . . , xn) ∈ Dn .

We next introduce a boundary operator b on such objects by
the formula

(bfn)(x1, . . . , xn+1) := C0(x1, xn+1)(id ⊗ fn(x2, . . . , xn))

+
n∑

i=1

(−1)ifn(x1, . . . , x̂i, . . . , xn+1)(id
i−1 ⊗ C0(xi, xi+1) ⊗ idn−i)

+(−1)n C0(xn, xn+1)(fn(x1, . . . , xn) ⊗ id) .

A calculation reveals b2 = 0.
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1 The first order consistency condition states that C1 must
satisfy bC1 = 0.

2 If C1 arises from a field redefinition (a map z : V → V ),
then this means that C1 = bz1.

=⇒ {1st order perturbations C1} ∼= H2(b) = ker b/ran b

3 At i-th order, we get a condition of the form bCi = wi,
where bwi = 0, which we want to solve for Ci (with wi

defined by lower order perturbations).

=⇒ ith order obstruction wi ∈ H3(b) = ker b/ran b
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Gauge theories

For gauge theories (e.g. Yang-Mills) need a further
modification: BRST symmetry
(e.g. Yang-Mills: sA = du − iλ[A,u], su = λ/2i [u, u], ...)

BRST-transformation defines map s(λ) : V → V . Must satisfy
compatibility condition

sC(x1, x2) = C(x1, x2)
(
s ⊗ id + γ ⊗ s

)
.

Expand:

si :=
di

dλi
s(λ)

∣∣∣∣
λ=0

.

Then si, Ci should satisfy order by order version of compatibility
condition.
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=⇒ Conditions can be reformulated in terms of modified
Hochschild cohomology: Define new differential B by

(Bfn)(x1, . . . , xn)

:= sfn(x1, . . . , xn) −

n∑

i=1

fn(x1, . . . , xn)(γi−1 ⊗ s ⊗ idn−i) .

Then one can prove

B2 = 0 = {b,B} ,

so δ = b + B defines new differential. We can then discuss
associativity and BRST condition simultaneously for Ci, si in
terms of δ.

Stefan Hollands Cargese 2009



OPE vertex algebras “Feynman rules” for vertex operators

Connection to Vertex algebras arises as follows:

We view this set of coefficients as matrix elements of operators
Y (x, φa) on the space V spanned by the fields φa:

Cc
ab(x) = 〈φc |Y (φa, x)|φb〉

This is very useful to construct the OPE in non-trivial
perturbative QFT’s! (rest of this talk). From now: φa → a.
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OPE vertex algebras

Axioms imply that Y satisfy axioms of a “vertex algebra” :

An OPE vertex algebra is a 4-tuple (V, Y,∇µ, |0〉), where V is a vector
space, ∇µ ∈ End(V ) a derivation, µ = 1, ..., D, |0〉 ∈ V , and
Y : V → End(V ) ⊗O(RD \ {diagonals}), linear in V , satisfying:

Vacuum: Y (x, |0〉) = 1V , ∇µ|0〉 = 0, Y (x, a)|0〉 = a + O(x)

Compatible derivations: Y (x,∇µa) = ∂µY (x, a)

Euclidean invariance

Consistency condition: Y (x, a)Y (y, b) = Y (y, Y (x − y, a)b) for
|x| > |y| > |x − y|

Quasisymmetry: Y (x, a)b = exp(x · ∇)Y (−x, b)a

Scaling degree: sdx=0 Y (x, a) ≤ dim(a)
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How to construct OPE vertex algebras?

How to characterize a QFT? E.g. by a classical field
equation:

�ϕ = λϕ3

This yields some restrictions on the OPE coefficients and
thus on the vertex operators:

�Y (x, ϕ) = λY (x, ϕ3)

We want to exploit these relations and develop an iterative
construction scheme
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Construction of OPE vertex algebras

Perturbative construction of the QFT associated to the scalar
field satisfying the field equation �ϕ = λϕ3:

Construct (formal) power series of vertex operators

Y (x, a) =

∞∑

i=0

λiYi(x, a) satisfying (1)

a) the field equation,

�Y (x, ϕ) = λY (x, ϕ3) ⇔ �Yi(x, ϕ) = Yi−1(x, ϕ3)

b) the consistency condition,

i∑

k=0

Yk(x, a)Yi−k(x, b) =

i∑

k=0

Yk(y, Yi−k(x − y, a)b)
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Computing higher order vertex operators

Start with the vertex operators of the free field (0-th order
vertex operators)
Invert the field equation to get to the next order:
Y1(x, ϕ) = �

−1Y0(x, ϕ3)
Use the consistency condition in the limit x → y to find the
first order vertex operators with non-linear vector
arguments:

Y1(x, ϕ2) = limy→x

{
Y1(y, ϕ)Y0(x, ϕ)

−
∑

a 〈a|Y1(y − x, ϕ)|ϕ〉 Y0(x, a) + (0 ↔ 1)
}

or, more generally,

Yi(x, a · b) = lim
y→x

i∑

j=0

Yj(y, a)Yi−j(x, b) − “counterterms”
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The Euclidean free field

Consider the Euclidean free field ϕ(x) in D ≥ 3 dimensions
(Schwinger two point-function G(x, y) = |x − y|2−D). We define
the corresponding OPE vertex algebra:

V =unital, free commutative ring generated by 1, ϕ and its
symmetric trace free derivatives,

∂l,mϕ = clSl,m(∂)ϕ,

where Sl,m(x̂) are the spherical harmonics in D
dimensions and cl is some normalisation constant.
We introduce creation and annihilition operators on V ,

b
+
l,m|1〉 = ∂l,mϕ, bl,m|1〉 = 0,

[
bl,m,b+

l′,m′

]
= 1
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Y can be read off the OPE of the free field normal ordered
products

Y (x, ϕ) = const. r−(D−2)/2
∞∑

l=0

N(l,D)∑

m=1

1√
ω(D, l)

×

[
rl+(D−2)/2Sl,m(x̂)b+

l,m + r−l−(D−2)/2Sl,m(x̂)bl,m

]

r = |x|,

ω(l, D) = 2l + D − 2

N(l, D) = number of linearly independent spherical harmonics Sl,m(x̂) of
degree l in D dimensions
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1 Calculate the first order vertex operator Y1(x, ϕ):

Y1(x, ϕ) = �
−1Y0(x, ϕ3)

2 Use the consistency condition to find Y1(x, ϕ2) and
Y1(x, ϕ3)

3 Go to 2nd order by Y2(x, ϕ) = �
−1Y1(x, ϕ3), and so on

4 vertex operators Yj(x, ϕp), p > 3 can also be calculated by
using the consistency condition
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Formula for the iteration step :

Yi+1(x, ϕ) = �
−1Yi(x, ϕ3)

= �
−1 lim

y→x

[
i∑

j=0

Yj(y, ϕ)Yi−j(x, ϕ2) − counterterms

]

= �
−1 lim

y1→x

[
i∑

j=0

Yj(y1, ϕ) lim
y2→x

[
i−j∑

k=0

Yk(y1, ϕ)Yi−j−k(x, ϕ)

−more counterterms

]
− counterterms

]

Dropping the counterterms and limits for the moment, this reads

Yi+1(x, ϕ) = �
−1

i∑

j=0

i−j∑

k=0

Yj(x, ϕ)Yk(x, ϕ)Yi−j−k(x, ϕ)
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This suggests a graphical representation by trees:

Yj(x, ϕ) Yk(x, ϕ) Yi−j−k(x, ϕ)

Yi+1(x, ϕ)
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Diagrammatic rules for writing down an integral expression for
Yn(x, ϕ):

Draw all trees with n 4-valent vertices (labeled by 1, ..., n)

With the vertex i, associate a number δi ∈ C \ Z and a unit
vector x̂i

With the line between vertices i and j, associate a
“momentum” νij ∈ C \ Z

Label the leaves by numbers 1, ..., nL. With the leaf j,
associate numbers lj ,mj ∈ N (mj ≤ N(lj,D))
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“Feynman rules” for vertex operators

Now to each tree, we apply the following graphical rules:

νij

νik1

νik2
νik3

νik4

lj , mj

lj , mj

→ π
sin πνij

P(−x̂i · x̂j , νij , D)

→ r2+δiδ(2 + νik1
+ νik2

+ νik3
− νik4

+ δi)

→ KDω(lj)
−1/2Slj ,mj

(x̂)rlj b
+
lj ,mj

→ KDω(lj)
−1/2Slj ,mj

(x̂)r−lj−D+2
blj ,mj

δi
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Write down all these factors and

integrate over all x̂i →
∫
SD−1 dx̂i

integrate over all νij →
∫

C
dνij

integrate over all δi →
1

2πi

∮
dδi

δi

take the sum over all lj,mj (Here, the expression becomes
ill-defined → consideration of
counterterms/renormalization necessary)
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Example

l4, m4

l3, m3l2, m2

l1, m1

x̂1

x̂2

x̂3

∫
SD−1 dx̂3

∫
SD−1 dx̂2

∫
SD−1 dx̂1×

b
+
l1,m1

bl2,m2
b

+
l3,m3

bl4,m4
rl1+l3−l2−l4−2D+10+

∑

π
sin π(l3−l2−D+4+δ1)×

→

Sl1,m1
(x̂)Sl2,m2

(x̂)Sl3,m3
(x̂)Sl4,m4

(x̂)×

P(−x̂1 · x̂2, l3 − l2 − D + 4 + δ1, D)×
π

sin π(l1+l3−l2−D+6+δ1+δ2)×

P(−x̂2 · x̂3, l1 + l3 − l2 − D + 6 + δ1 + δ2, D)×

(
1

2πi

)3
K4

D

∮
dδ3

δ3

∮
dδ2

δ2

∮
dδ1

δ1

×

π
sin π(l1+l3−l2−l4−2D+10+

∑
δi)

P(−x̂ · x̂3,

, l1 + l3 − l2 − l4 − 2D + 10 +
∑

δi, D)×

x̂
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Conclusions

1 The OPE can be used to give a general definition of QFT
independent of Lagrangians or special states (such as
vacuum).

2 One can impose powerful consistency conditions on the
OPE. These incorporate algebraic content of QFT.

3 Perturbations can be characterized intrinsically
4 Consistency conditions together with field equations give

rise to new and efficient scheme for pert. calculations.
5 Renormalization not needed.
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