
A closed-form extension to the Black-Cox model

A closed-form extension to the Black-Cox
model
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A closed-form extension to the Black-Cox model

Introduction and model setup

Single-name default models

Usually, single default models are divided into two main categories.

Structural models : they aim at explaining the default time with
other economic variables of the firm. (Merton (1974), Black and
Cox (1976), Leland (1994), Briys and de Varenne 1997, ...)

Intensity (or reduced form) models : these models describe the

instantaneous probability of default with an exogeneous process
(λt, t ≥ 0) :

P(τ ∈ [t, t + dt)|Gt) ≈ λtdt.

(Jarrow and Turnbull (1995), Lando (1998), Duffie and Singleton
(1999), Brigo and A. (2005) ...)
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A closed-form extension to the Black-Cox model

Introduction and model setup

Merton’s model (1974)
Merton’s pioneering model assume that the value of a firm is the sum
of its equity and its debt : Vt = Et + Dt.

The debt brings on a notional value Lwith a single maturity T.

Default occurs at time T if the debt cannot be payed back (i.e.
VT ≤ L). In that case, debtholders are first reimbursed DT = VT

and equityholders get 0. Otherwise, DT = L and ET = VT − L and
ge have :

τ = T1{VT≤L} + ∞1{VT>L},DT = min(L,VT),ET = (VT − L)+

The firm value is supposed to follow a geometric Brownian
motion under a martingale measure P :

dVt = rVtdt + σVtdWt.

=⇒ closed formula for P(τ = T) and the equity appears as a
Call option on the firm value.
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A closed-form extension to the Black-Cox model

Introduction and model setup

Black and Cox model (1976)

One of the major drawback of Merton’s model is that a firm can
default only at one (deterministic) time : the maturity of its debt T.
To correct this, Black and Cox extend Merton’s model by assuming in
addition that the debtholders can force the firm to bankruptcy when
Vt ≤ C eαt, with C eαT < L and C < V0 :

τ = min(inf{t ≥ 0,Vt ≤ C eαt},T1{VT≤L} + ∞1{VT>L}).

Closed formulas for P(τ ≤ t), the equity and the debt values at
time t ∈ [0,T].

Many extensions of this model called First-passage-time models.
(Leland (1994), Briys and de Varenne 1997, Brigo and Tarenghi
(2004)...)
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A closed-form extension to the Black-Cox model

Introduction and model setup

Structural models : Pro’s and con’s

(+) The default event has a clear and meaningful origin.

(+) Default and equity are explicitly related.

(≈) Not meant originally for being calibrated to market data.
Calibration to Credit Default Swaps (CDS) data has been recently
investigated for some first passage time models (e.g. Brigo and
Morini (2006) and Dorfleitner, Schneider and Veza (2008)).

(-) Structural model are often inappropriate to manage hedging
portfolios since the default is predictable (unless considering
jumps, e.g Zhou (2001)). Said differently, default probabilities
and credit spreads are underestimated for short maturities.
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A closed-form extension to the Black-Cox model

Introduction and model setup

Intensity models : Pro’s and con’s

(+) Intensity models are in general easy to calibrate to CDS data
and reflect the information known by the market on the single
default (Jarrow and Protter (2004)).

(+) They are more tractable to manage hedging portfolios.

(-) The default event remains disconnected from other rationales
of the firm like its debt or its equity values. This is unfortunate
for pricing in a coherent manner equity and credit products, but
also for understanding the dependence between defaults since
much more information is available on equity market.
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A closed-form extension to the Black-Cox model

Introduction and model setup

Hybrid models

To try to get the advantages of both structural and reduced-form
models, models in between called “hybrid models” have been
suggested, where the default intensity is a function of the stock or of
the firm value (e.g. Madan and Unal (1998,2000), Atlan and Leblanc
(2005), Carr and Linetsky (2006)...)
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A closed-form extension to the Black-Cox model

Introduction and model setup

The model setup
We consider a very simple hybrid extension of the Black-Cox model :

(Ft) denotes the default-free filtration and (Wt, t ≥ 0) a
(Ft)-Brownian motion.

Firm value : dVt = rVtdt + σVtdWt.

Default intensity :

λt = µ+1{Vt≤C eαt} + µ−1{Vt>C eαt}, (1)

where C > 0, α ∈ R, and µ+ > µ− ≥ 0.

More precisely, let ξ be ax exponential r.v. of parameter 1
independent of F , the default is defined by :

τ = inf{t ≥ 0,

∫ t

0

λsds ≥ ξ}. (2)

As usual, we also introduce (Ht, t ≥ 0) the filtration generated by
(τ ∧ t, t ≥ 0) and define Gt = Ft ∨Ht.
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A closed-form extension to the Black-Cox model

Introduction and model setup

Comments on the model

Very simple parametrization with a clear meaning. We expect to
have V0/C > 1 for healthy firms, and V0/C < 1 for firms in
difficulty.

The Black-Cox model appears as the limit case µ− = 0,
µ+ → +∞ when V0 > C.

Contrary to the Black-Cox model, we do not consider the
additional possibility of default at time T since it would make
the default predictable in some cases.

In the Black-Cox model, the barrier C eαt is a safety covenant that
allow bondholders to force bankruptcy. Here, the barrier has
rather to be seen as a border between two credit grades.
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A closed-form extension to the Black-Cox model

Introduction and model setup

The main result

Theorem 1

Let us set b = 1
σ log(C/V0), m = 1

σ (r− α − σ2/2) and
µb = µ+1{b>0} + µ−1{b<0}. The default cumulative distribution function
P(τ ≤ t) is a function of t, b, m, µ− and µ+ and is fully characterized by its
Laplace transform defined for λ ∈ C+ := {z ∈ C,Re (z) > 0},

Z ∞

0

e−λt P(τ ≤ t)dt =
1

λ
− 1

λ + µb

(3)

+ emb−|b|
q

2(λ+µb)+m2 ×
(

1

λ + µb

− 1
p

λ + µ− + m2/2
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− m
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q
2(λ + µ−) + m2
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1

2(λ + µ−)
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+
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+
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A closed-form extension to the Black-Cox model

Introduction and model setup

Other structural models based on closed formula for
Parisian options

The calculation of the Laplace Transform mainly relies on formulas
obtained by Chesney, Jeanblanc and Yor (1997) to calculate Parisian
option prices.
Other extensions of the Black Cox model based on these formulas
have been considered by Moraux (2002), Yu (2004) and Chen and
Suchanecki (2007), who consider for D > 0 the two following cases :

τ = inf{t ≥ D,∀u ∈ [t−D, t],Vu ≤ C eαu} (Parisian time)

τ = inf{t ≥ 0,
∫ t

0
1{Vu≤C eαu}du > D} (cumulated Parisian time or

ParAsian time).

Nonetheless, in both cases, the default is predictable.
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A closed-form extension to the Black-Cox model

Proof of the main result

Sketch of the proof

The calculation of the Laplace transform is split into three steps :

Step 1 Change of the probability measure and reduction to the case
µ− = 0.

Step 2 Calculation of the Laplace transform when b = 0.

Step 3 Calculation of the Laplace transform when b > 0 and b < 0.
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A closed-form extension to the Black-Cox model

Proof of the main result

Step 1 I

Vu = V0 exp((r− 1
2σ

2)u + σWu) and
1{Vu≤C eαu} = 1{Wu+

1
σ (r−α−σ2/2)u≤ 1

σ log(C/V0)}.

We set for an arbitrary T > t,

b =
1

σ
log(C/V0), m =

1

σ
(r−α−σ2/2), and

dP̃

dP

∣∣∣
GT

= exp(−mWT−m2T/2).

(W̃u := Wu + mu,u ∈ [0,T]) is a std Brownian motion under P̃, and

τ = inf{t ≥ 0,

∫ t

0

µ+1{W̃u≤b} + µ−1{W̃u>b}du ≥ ξ}.

=⇒ P(τ ≥ t) = Ẽ[exp(mW̃t −m2t/2)1{τ≥t}] is a function
of t, b, m, µ− and µ+.
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A closed-form extension to the Black-Cox model

Proof of the main result

Step 1 II

Notations :
t ≥ 0, Pb,m,µ−,µ+

(t) = P(τ ≤ t) (resp. Pc
b,m,µ−,µ+

(t) = 1−Pb,m,µ−,µ+
(t)),

λ ∈ C+, Lb,m,µ−,µ+
(λ) =

∫ +∞
0

e−λt Pb,m,µ−,µ+
(t)dt

(resp. Lcb,m,µ−,µ+
(λ) = 1/λ − Lb,m,µ−,µ+

(λ)).

τ
law
= min(ξ1/µ−, inf{t ≥ 0,

∫ t

0
(µ+ − µ−)1{Vu≤C eαu}du ≥ ξ2}) with

ξ1, ξ2 ∼ Exp(1) independent of F .

Pc
b,m,µ−,µ+

(t) = e−µ−t Pc
b,m,0,µ+−µ−

(t)

Lcb,m,µ−,µ+
(λ) = Lcb,m,0,µ+−µ−

(λ + µ−).

We set µ− = 0 and µ = µ+ in the following of the proof.
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A closed-form extension to the Black-Cox model

Proof of the main result

Step 2 : b = 0 I

For D > 0, we introduce

τD = inf{t ≥ 0,

∫ t

0

1{W̃u≤0}du ≥ D}.

Given {ξ/µ = D}, τD law
= τ .

From Chesney and al. (1997), the law of (W̃t,A
−
t :=

∫ t

0
1{W̃u≤0}du) is

known : x ∈ R and D > 0, we have :

P̃(W̃t ∈ dx,A−
t ≤ D) = 1{t>D}
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"
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2π
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#
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Z D
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2π
p
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Z t

D

xD exp(− x2

2(t−s) )

2π
p

s3(t − s)3
ds

3
5
!

+ 1{t≤D}

exp(− x2

2t )√
2πt

.
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A closed-form extension to the Black-Cox model

Proof of the main result

Step 2 : b = 0 II

{τD ≥ t} = {A−
t ≤ D}, and we get integrating w.r.t x :

P(τD ≥ t) = Ẽ[exp(mW̃t −m2t/2)1
{A−

t ≤D}
]

= 1{t≤D} + 1{t>D}

 

e−m2t/2

 

1

2
+

1

π
arctan

 

D− t/2
p

D(t−D)

!!

+
m√
2π

"

Z D

0

e−m2s/2 Φ(m
√
t− s)√

s
ds + D

Z t

D

e−m2s/2 Φ(m
√
t− s)√

s3
ds

−
Z t

t−D

(D + s− t) e−m2s/2 Φ(−m
√
t− s)√

s3
ds

#!

.
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A closed-form extension to the Black-Cox model

Proof of the main result

Step 2 : b = 0 III

Using P(τ ≥ t) =
∫ +∞
0

P(τ δ ≥ t)µ e−µδ dδ, we get :

Pc
0,m,0,µ(t) = e−µt

(1 − e−m2t/2
) +

1

π

Z t

0

e−(µ+m2/2)s

√
s

e−m2(t−s)/2

√
t − s

ds

+
m√
2π

"
−
Z t

0

e−(µ+m2/2)s

√
s

Φ(m
√
t − s) e−µ(t−s) ds

+
1

µ

Z t

0

e−m2s/2 − e−(µ+m2/2)s

√
s3

Φ(m
√
t − s) ds

− 1

µ

Z t

0

e−m2s/2 − e−(µ+m2/2)s

√
s3

e−µ(t−s)
Φ(−m

√
t − s)ds

+

Z t

0

e−(µ+m2/2)s

√
s

Φ(−m
√
t − s) e−µ(t−s) ds

#
.

Aurélien Alfonsi (CERMICS, Ecole des Ponts) Nice, September 30th, 2009 20 / 48



A closed-form extension to the Black-Cox model

Proof of the main result

Step 2 : b = 0 IV

We recognize convolution products of

∫ ∞

0

t−1/2 e−λt dt =

√
π

λ
,

∫ ∞

0

e−λt Φ(m
√
t)dt =

1

2λ
+

m

2λ
√
2λ + m2

,

∫ ∞

0

t−3/2 e−λt(1− e−µt)dt = 2
√

π(
√

λ + µ −
√

λ),

and get after some simplifications :

Lc
0,m,0,µ(λ) =

1
p

λ + m2/2

1
p
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+

m

µ

“
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+
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A closed-form extension to the Black-Cox model

Proof of the main result

Step 3, b < 0
We set τb = inf{u ≥ 0, W̃u = b} (recall Ẽ[e−λτb ] = e−

√
2λ|b|) and

τ ′ = inf{t ≥ 0,
∫ t

0
1{W̃τb+u−b≤0}du ≥ ξ/µ}, so that

τ = τb + τ ′.

Pc
b,m,0,µ(t) =

Ẽ[exp(mW̃t −m2t/2)1{τb≥t}] + Ẽ[exp(mW̃t −m2t/2)1{τb<t}1{τ ′≥t−τb}]

= 1− Ẽ[exp(mW̃t −m2t/2)1{τb<t}]

+Ẽ[emb−m2τb/2 1{τb<t} e
m(W̃τb+(t−τb)

−b)−m2(t−τb)/2 1{τ ′≥t−τb}]

= 1− Ẽ[exp(mb−m2τb/2)1{τb<t}] (Doob)

+Ẽ[exp(mb−m2τb/2)1{τb<t}P
c
0,m,0,µ(t− τb)]. (Strong Markov)

=⇒ Lcb,m,0,µ(λ) =
1

λ
+ emb+b

√
2λ+m2

(
Lc0,m,0,µ(λ) − 1

λ

)
.
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A closed-form extension to the Black-Cox model

Proof of the main result

Step 3, b > 0

We set τ ′′ = inf{t ≥ 0,
∫ t

0
1{W̃τb+u−b≤0}du ≥ ξ/µ}, so that

1{τ≥t} = 1{τb≥t}1{ξ/µ≥t} + 1{τb<t}1{ξ/µ≥τb}1{τ ′′≥t−τb}.

Pc
b,m,0,µ(t) = e−µt(1− Ẽ[exp(mW̃t −m2t/2)1{τb<t}])

+Ẽ[emb−m2τb/2 1{τb<t}1{ξ/µ≥τb} e
m(W̃τb+(t−τb)

−b)−m2(t−τb)/2 1{τ ′′≥t−τb}]

= e−µt(1− Ẽ[emb−m2τb/2 1{τb<t}])+ Doob

Ẽ[emb−m2τb/2 1{τb<t}1{ξ/µ≥τb}P
c
0,m,0,µ(t− τb)] Markov + lack of memory

= e−µt(1−Ẽ[emb−m2τb/2 1{τb<t}])+Ẽ[emb−(µ+m2/2)τb 1{τb<t}P
c
0,m,0,µ(t−τb)].

=⇒ Lcb,m,0,µ(λ) =
1

λ + µ
+ emb−b

√
2(λ+µ)+m2

(
Lc0,m,0,µ(λ) − 1

λ + µ

)
.
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A closed-form extension to the Black-Cox model

Proof of the main result

The geometric Brownian motion barrier case

λt = µ+1{Vt≤C e(α−η2/2)t+ηZt} +µ−1{Vt>C e(α−η2/2)t+ηZt}, with 〈W,Z〉t = ρt.

We exclude the trivial case ρ = 1 with η = σ, and set
ς =

√
σ2 + η2 − 2ρση > 0. Bt = (σWt − ηZt)/ς is a std B.m.

Since

1{Vt≤C e(α−η2/2)t+ηZt} = 1{Bt+
1
ς (r−α−(σ2−η2)/2)t≤ 1

ς log(C/V0)},

we can proceed like in step 1 and we get the Laplace transform of
P(τ ≤ t) in that case by simply taking

b =
1

ς
log(C/V0) and m =

1

ς
(r− α − (σ2 − η2)/2).
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A closed-form extension to the Black-Cox model

Proof of the main result

Mathematical properties of P(τ ≤ t) I

Proposition 2

For any t ≥ 0, the function Pb,m,µ−,µ+
(t) is nondecreasing with respect to b,

µ− and µ+, and is nonincreasing with respect to m.

Pc
b,m,µ−,µ+

(t) = E

[
e−
R t
0

µ+1{Wu+mu≤b}+µ−1{Wu+mu>b}du
]

=

e−µ−t
E

[
e−
R t
0
(µ+−µ−)1{Wu+mu≤b}du

]
.

Aurélien Alfonsi (CERMICS, Ecole des Ponts) Nice, September 30th, 2009 25 / 48



A closed-form extension to the Black-Cox model

Proof of the main result

Mathematical properties of P(τ ≤ t) II

Proposition 3

When b 6= 0, the functions Pb,m,µ−,µ+
(t) and ∂pPb,m,µ−,µ+

(t) for
p ∈ {b,m, µ−, µ+} are C∞ on [0,∞). Moreover, for any ε > 0, we have

∀k ∈ N
∗,P

(k)
b,m,µ−,µ+

(t) =
t→∞

O(e(ε−µ−)t), ∀k ∈ N, ∂pP
(k)
b,m,µ−,µ+

(t) =
t→∞

O(e(ε−µ−)t).

When b = 0, P0,m,µ−,µ+
is C1 but not C2 on [0,∞) and C∞ on (0,∞).

Proposition 4

The functions Pb,m,µ−,µ+
(t) and ∂pPb,m,µ−,µ+

(t) are continuous w.r.t.
(b,m, µ−, µ+) and t ≥ 0.
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A closed-form extension to the Black-Cox model

Numerical methods for the Laplace inversion
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A closed-form extension to the Black-Cox model

Numerical methods for the Laplace inversion

Framework and goal

f : R → R : Real valued function such that ∀t < 0, f (t) = 0 and f (t)e−γt

is integrable for some γ > 0.

f̂ (z) =

∫ ∞

0

e−zt f (t)dt, Re (z) ≥ γ : known function

We want to recover f using the inversion formula :

f (t) =
eγt

2π

∫ +∞

−∞
e−ist f̂ (γ − is)ds, t > 0.

Typically, f will be either Pb,m,µ−,µ+
(t) or ∂pPb,m,µ−,µ+

(t) for
p ∈ {b,m, µ−, µ+}.
To compute f , one has to discretize the integral and also to truncate
the integration domain : we want to quantify these errors.
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A closed-form extension to the Black-Cox model

Numerical methods for the Laplace inversion

The discretization error
We introduce

fh(t) =
h eγt

2π

∞∑

k=−∞
e−ikht f̂ (γ − ikh) =

h

2π

∞∑

k=−∞
eγt+ikht f̂ (γ + ikh) .

Proposition (Abate, Choudhury, Whitt, 1999)

If f is C0 bounded, we have ∀t < 2π/h, |f (t) − fh(t)| ≤ ‖f‖∞ e−2πγ/h

1−e−2πγ/h .

Poisson summation Formula :
∞∑

k=−∞
f (t +

2πk

h
) e−γ(t+2πk/h) =

h

2π

∞∑

k=−∞
eikht f̂ (γ + ikh) .

=⇒ fh(t) − f (t) =
∑

k∈Z∗ f (t +
2πk

h
)

︸ ︷︷ ︸
=0 when k<0, t<2π/h

e−γ2πk/h.
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A closed-form extension to the Black-Cox model

Numerical methods for the Laplace inversion

The truncation error
We approximate fh(t) = h eγt

2π f̂ (γ) + h eγt

π Re
(∑∞

k=1 e
−ikht f̂ (γ − ikh)

)
by

the following finite sum

fNh (t) =
h eγt

2π
f̂ (γ) +

h eγt

π
Re

(
N∑

k=1

e−ikht f̂ (γ − ikh)

)
.

Proposition 5

f : C3 on R+ such that f (0) = 0 and ∃ǫ > 0, ∀k ≤ 3, f (k)(s) = O(e(γ−ǫ)s),
when s → +∞. Let h ∈ (0, 2π/T). Then,

∃K > 0,∀t ∈ (0,T], |fNh (t) − fh(t)| ≤ K(1 + 1/t)
eγt

N2
.

Proof : Control of the remainder of the sum, using that

f̂ (γ − ikh) =
−f ′(0)

(ikh−γ)2
+

f ′′(0)
(ikh−γ)3

−
∫∞
0

f (3)(u)
(ikh−γ)3

e(ikh−γ)u du (Int. by parts).
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A closed-form extension to the Black-Cox model

Numerical methods for the Laplace inversion

The Laplace inversion using FFT I

FFT : very efficient algorithm to compute (x̂l, l = 0, . . . ,N − 1) from
(xk, k = 0, . . . ,N − 1), where

x̂l =

N−1∑

k=0

e−2iπkl/N xk, for l = 0, . . . ,N − 1.

We consider the time-grid tl = 2πl/(Nh) for 1 ≤ l ≤ N.

fNh (tl) =
h eγtl

2π
f̂ (γ) +

h eγtl

π
Re

 
NX

k=1

e−2iπkl/Nbf (γ − ikh)

!

=
h eγtl

2π
f̂ (γ) +

h eγtl

π
Re

 
e−2iπ(l−1)/N

NX

k=1

e−2iπ(k−1)(l−1)/N e−2ikπ/Nbf (γ − ikh)

!

can be computed with a FFT on (e−2ikπ/N f̂ (γ − ikh) , k = 1, . . . ,N).
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A closed-form extension to the Black-Cox model

Numerical methods for the Laplace inversion

The Laplace inversion using FFT II
Corollary 6

Under the assumptions of Prop 5, ∃K > 0 s.t.

∀l ≥ 1, tl ≤ T, |fNh (tl)− f (tl)| ≤ Kmax

(
eγT

N2
,

h

2πN

)
+‖f‖∞

e−2πγ/h

1− e−2πγ/h
.

Parameters to achieve a precision of order ε :

h < 2π/T,
2πγ

h
= log(1 + 1/ε), N > max

(
h

2πε
,

√
eγT

ε

)

Very efficient method that allows to recover f on a whole
time-grid.

The time grid has to be regular, and it is convenient to take it
such that it includes the standard payment grids (quarterly).
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A closed-form extension to the Black-Cox model

Numerical methods for the Laplace inversion

The Euler summation technique I
It is an efficient alternative to the FFT.

Contrary to the FFT, it compute f (t) at a single time and not on a
regular time grid, which can be convenient for bespoke products.

The trick is to take h = π/t to get an alternating series and

replace fNπ/t(t) = eγt

2t f̂ (γ) + eγt

t

∑N
k=1(−1)k Re

(
f̂
(
γ + iπkt

))
by a

more accurate proxy of fπ/t(t) : E(q,N, t).

Proposition 7

q ∈ N
∗, f Cq+4 function s.t. ∃ǫ > 0, ∀k ≤ q + 4, f (k)(s) = O(e(γ−ǫ)s). We

set E(q,N, t) =
∑q

k=0

(q
k

)
2−qfN+k

π/t (t). Then,

˛

˛fπ/t(t) − E(q,N, t)
˛

˛ ≤ t eγt |f ′(0) − γf (0)|
π2

N! (q + 1)!

2q (N + q + 2)!
+O

„

1

Nq+3

«

,N → ∞.
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A closed-form extension to the Black-Cox model

Numerical methods for the Laplace inversion

The Euler summation technique II

Practical choice of parameters : We take q = N = 15 and γ = 11.5/t.

We have
∣∣fπ/t(t) − E(q,N, t)

∣∣ ≤ eγt N! (q+1)!
2q (N+q+2)! ≈ 3.13× 10−10.

Discretization error : |fπ/t(t) − f (t)| ≤ ‖f‖∞ e−2γt

1−e−2γt , is of order

10−10.

The overall error is therefore of order 10−10.

For a fixed t, the computation cost of E(q,N, t) is proportional to
N + q.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

1 Introduction and model setup

2 Proof of the main result

3 Numerical methods for the Laplace inversion

4 Calibration to CDS and numerical results

5 Conclusion
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

Pricing of CDS I

We consider a CDS with maturity T on a unit notional value, and
assume a deterministic recovery rate 1− LGD ∈ [0, 1] and short
interest rate r.
Default Leg : DL(0,T) = E[e−rτ 1{τ≤T}LGD] =

LGD
[
e−rT

P(τ ≤ T) +
∫ T

0
r e−ru

P(τ ≤ u)du
]
.

Payment Leg : Payment grid : T0 = 0 < T1 < · · · < Tn = T.
β(t) ∈ {1, . . . ,n} is the index s.t. Tβ(t)−1 ≤ t < Tβ(t).

PL(0,T) = R× E

"

n
X

i=1

(Ti − Ti−1) e
−rTi 1{τ>Ti} + (τ − Tβ(τ)−1) e

−rτ 1{τ≤T}

#

= R

»
Z T

0

e−ru
P(τ > u)du−

Z T

0

r e−ru(u− Tβ(u)−1)P(τ > u)du

–

.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

Pricing of CDS II

Proposition 8

With a deterministic interest rate r > 0 and a deterministic recovery
rate 1− LGD ∈ [0, 1], the CDS fair rate within the model (1) is given by :

Rmodel(0,T) = LGD
e−rT Pb,m,µ−,µ+

(T) +
R T

0
r e−ru Pb,m,µ−,µ+

(u)du
R T

0
e−ru Pc

b,m,µ−,µ+
(u)du−

R T

0
r e−ru(u− Tβ(u)−1)P

c
b,m,µ−,µ+

(u)du
,

where b = 1
σ log(C/V0) and m = 1

σ (r−α− σ2/2). Moreover, if we neglect
the second integral in the denominator this rate is nondecreasing with
respect to C, α, µ− and µ+, and we get the following bounds :

µ− .
Rmodel(0,T)

LGD
. µ+. (4)
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

The calibration procedure I
Our aim is not to present the ultimate calibration procedure, but
rather to see qualitatively how this Black-Cox extension can fit
different kinds of market data.

We have ν = 8 CDS market data and want to minimize :

min
b,m∈R,0<µ−<µ+

ν∑

i=1

(Rmodel(0,T(i)) − Rmarket(0,T(i)))2.

Minimization is achieved with a gradient algorithm (FFT to get
Pb,m,µ−,µ+

(t) and ∂pPb,m,µ−,µ+
(t), and integration using

Simpson’s rule) with the following starting point :

b = 0, m = 0, µ− = min
i=1,...,ν

Rmarket(0,T(i))

LGD
, µ+ = max

i=1,...,ν

Rmarket(0,T(i))

LGD
.

It takes few seconds.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

The calibration procedure II

We have tested this procedure trying to get back parameters from
computed prices : it can be worth to have a better prior on (b,m).

We take a finite set S ⊂ R
2, typically

S = {−B + 2iB/n, i = 0, . . . ,n} × {−M + 2iM/n, i = 0, . . . ,n} for
some B,M > 0,n ∈ N

∗. For (b,m) ∈ S, we minimize the criterion
with respect to µ− and µ+, keeping b and m constant. In practice,
we have mostly taken B,M ∈ {1, 2} and n = 8.

Then, we select (b,m) ∈ S that achieves the smallest score and
use it (with the optimized parameters µ− and µ+) as the initial
point of the gradient algorithm for the global minimization.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

The calibration procedure III

This improves the algorithm but the problem is anyway ill-posed :
two different set of parameters can give very similar default cdf.
For example, the constant intensity model λ > 0 corresponds to the
following parametrizations :

1 µ− = µ+ = λ, with b, λ ∈ R arbitrarily chosen,

2 µ− = λ, b → −∞, with m ∈ R and µ+ > µ− arbitrarily chosen,

3 µ+ = λ, b → +∞, with m ∈ R and µ+ > µ− arbitrarily chosen.

Aurélien Alfonsi (CERMICS, Ecole des Ponts) Nice, September 30th, 2009 40 / 48



A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

The calibration procedure IV
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FIG.: Left picture : CDS prices in function of the maturities. Prices are in bps
(10−4) with LGD = 1 and r = 5%. Right picture : associated cumulative
distribution functions. Dashed line : is b = −0.2, m = 0.6, µ− = 0.005 and
µ+ = 0.3. Solid line : b = 2.168849, m = 0.912237, µ− = 0.008414 and
µ+ = 0.067515.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

Calibration on market data I

Data from 2006 to 2009 on Crédit Agricole, PSA, Ford and
Saint-Gobain.

We have taken r = 5%, LGD = 0.6 except for CA (LGD = 0.8).

Market data are in dotted lines and Calibrated data in solid line.

We have indicated V0/C and α using the 1Y ATM implied vol as
a proxy of the firm value volatility.

We have plotted each time the default cdf since it is what we
really calibrate.

We have split the results into three cases :

The curve T 7→ Rmarket(0,T) is mostly increasing.

The curve T 7→ Rmarket(0,T) is mostly decreasing.

The curve is rather flat.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

Increasing rates I
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FIG.: Left, CA 08/31/06 : b = −2.3415, m = −0.2172, µ− =
2.164× 10−4, µ+ = 5.597× 10−3, V0/C = 1.753, α = −1.78× 10−2. Right,
PSA 05/03/06 : b = −2.3878, m = −0.3745, µ− = 5.581× 10−4, µ+ =
2.214× 10−2, V0/C = 1.757, α = 2.038× 10−2.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

Increasing rates II
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FIG.: Left, Ford 11/30/06 : b = −1.734, m = −1.363, µ− = 1.2× 10−2, µ+ =
7.05× 10−2, V0/C = 2.173, α = 0.436. Right, SG 10/08/08 : b = −1.897, m =
0.1725, µ− = 2.135× 10−2, µ+ = 0.652, V0/C = 2.8506, α = −0.3213.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

Decreasing rates I
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FIG.: Left, Ford 11/24/08 :
b = 0.209, m = 0.344, µ− = 0.2014, µ+ = 1.986, V0/C = 0.716, α = −1.3.
Right, Ford 02/25/09 : b = 0.8517, m = 0.5277, µ− = 6.85× 10−2, µ+ =
0.7806, V0/C = 0.3355, α = −1.2676
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

Decreasing rates II
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FIG.: Left, PSA 03/06/09 : b = 15.55, m = 4.889, µ− = 6.055× 10−2, µ+ =
0.104, V0/C = 6.32× 10−5, α = −3.3. Right, SG 12/01/08 : b = −0.268, m =
0.567, µ− = 5.46× 10−2, µ+ = 0.154, V0/C = 1.1837, α = −0.6213.
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A closed-form extension to the Black-Cox model

Calibration to CDS and numerical results

Flat rates
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FIG.: Left, SG 10/21/08 : b = −1.032, m = 0.493, µ− = 4.75× 10−2, µ+ =
9.23× 10−2, V0/C = 1.83, α = −0.531. Right, SG 10/31/08 :
b = −3.42× 10−2, m = 4.69× 10−2, µ− = 1.45× 10−2, µ+ =
9.295× 10−2, V0/C = 1.021, α = −0.282.
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A closed-form extension to the Black-Cox model

Conclusion

Conclusion

We have proposed an hybrid extension to the Black-Cox model.

Its has a very clear and simple parametrization.

The default probabilities can be computed easily with Laplace
inversion methods, which provide a very fast calibration
procedure.

The model seems to fit qualitatively well a wide range of CDS
data.

The calibration to the CDS only ensures a good fit of the default
cdf, not of the parameters.

Further work : We would like ton investigate how this model can be
used in a multiname setting, using the “bottom-up” approach.
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