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Introduction

In this presentation, we address the hedging issue of CDO tranches in
a market model where pricing is connected to the cost of the hedge

In credit risk market, models that connect pricing to the cost of the
hedge have been studied quite lately

Discrepancies with the interest rate or the equity derivative market

Model to be presented is not new, require some stringent
assumptions, but the hedging can be fully described in a dynamical
way
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Introduction

Compared with previous presentations of this research

The theoretical framework about replication of loss derivatives is
presented in more details

We provide a comparison analysis of hedging ratios computed in
alternative models and using di�erent methods

We propose a natural extension of the model where individual deltas
can be discriminated by the level of CDS spreads

The replication of CDO tranches has also been investigated in a similar
framework by Bielecki, Jeanblanc and Rutkowski (2007), Frey and
Backhaus (2007, 2008)
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Default times

n credit references

τ1,. . . ,τn : default times de�ned on a probability space (Ω,G,P)

N i
t = 1{τi≤t}, i = 1, . . . , n : default indicator processes

Hi = (Hit)t≥0, Hit = σ(N i
s, s ≤ t), i = 1, . . . , n : natural �ltration

of N i

H = H1 ∨ · · · ∨Hn : global �ltration of default times

Dynamics hedging of CDO tranches in Markovian set-ups



Theoretical framework
Homogeneous Markovian contagion model

Empirical results

Default times

No simultaneous defaults : P(τi = τj) = 0,∀i 6= j

Default times admit H-adapted default intensities

For any i = 1, . . . , n, there exists a non-negative H-adapted process
αi,P such that

M i,P
t := N i

t −
∫ t

0

αi,P
s ds

is a (P,H)-martingale.

αi,P
t = 0 on the set {t > τi}

M i,P, i = 1, . . . , n will be referred to as the fundamental martingales
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Market Assumption

Instantaneous digital CDS are traded on the names i = 1, . . . , n

Instantaneous digital CDS on name i at time t is a stylized bilateral
agreement

O�er credit protection on name i over the short period [t, t+ dt]
Buyer of protection receives 1 monetary unit at default of name i
In exchange for a fee equal to αi

tdt

0

1− αi
tdt : default of i between t and t+ dt

−αi
tdt : survival of name i

t t+ dt

Cash-�ow at time t+ dt (buy protection position) : dN i
t − αitdt

αit = 0 on the set {t > τi} (Contrat is worthless)
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Market Assumption

Credit spreads are driven by defaults : α1, . . . , αn are H-adapted
processes

Payo� of a self-�nanced strategy

V0e
rT +

n∑
i=1

∫ T

0

δise
r(T−s) (dN i

s − αisds
)︸ ︷︷ ︸

CDS cash-�ow

.

r : default-free interest rate

V0 : initial investment

δi, i = 1, . . . , n, H-predictable process
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Hedging and martingale representation theorem

Theorem (Predictable representation theorem)

Let A ∈ HT be a P-integrable random variable. Then, there exists

H-predictable processes θi, i = 1, . . . , n such that

A = EP[A] +
n∑
i=1

∫ T

0

θis
(
dN i

s − αi,Ps ds
)

= EP[A] +
n∑
i=1

∫ T

0

θisdM
i,P
s

and EP

(∫ T
0
|θis|αi,Ps ds

)
<∞.
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Hedging and martingale representation theorem

Theorem (Predictable representation theorem)

Let A ∈ HT be a Q-integrable random variable. Then, there exists

H-predictable processes θ̂i, i = 1, . . . , n such that

A = EQ[A] +
n∑
i=1

∫ T

0

θ̂is
(
dN i

s − αisds
)︸ ︷︷ ︸

CDS cash-�ow

= EQ[A] +
n∑
i=1

∫ T

0

θ̂isdM
i
s

and EQ

(∫ T
0
|θis|αi,Ps ds

)
<∞.
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Hedging and martingale representation theorem

Building a change of probability measure

Describe what happens to default intensities when the original
probability is changed to an equivalent one

From the PRT, any Radon-Nikodym density ζ (strictly positive
(P,H)-martingale with expectation equal to 1) can be written as

dζt = ζt−

n∑
i=1

πitdM
i,P
t , ζ0 = 1

where πi, i = 1, . . . , n are H-predictable processes
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Hedging and martingale representation theorem

Conversely, the (unique) solution of the latter SDE is a local
martingale (Doléans-Dade exponential)

ζt = exp

(
−

n∑
i=1

∫ t

0

πisα
i,P
s ds

)
n∏
i=1

(1 + πiτi
)N

i
t

The process ζ is non-negative if πi > −1, for i = 1, . . . , n
The process ζ is a true martingale if EP [ζt] = 1 for any t or if πi is
bounded, for i = 1, . . . , n
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Hedging and martingale representation theorem

Theorem (Change of probability measure)

De�ne the probability measure Q as

dQ|Ht = ζtdP|Ht .

where

ζt = exp

(
−

n∑
i=1

∫ t

0

πisα
i,P
s ds

)
n∏
i=1

(1 + πiτi
)N

i
t

Then, for any i = 1, . . . , n, the process

M i
t := M i,P

t −
∫ t

0

πisα
i,P
s ds = N i

t −
∫ t

0

(1 + πis)α
i,P
s ds

is a Q-martingale. In particular, the (Q,H)-intensity of τi is (1 + πit)α
i,P
t .
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Hedging and martingale representation theorem

From the absence of arbitrage opportunity{
αit > 0

} P−a.s.=
{
αi,Pt > 0

}
For any i = 1, . . . , n, the process π̂i de�ned by :

π̂it =

(
αit

αi,Pt
− 1

)
(1−N i

t−)

is an H-predictable process such that π̂i > −1
The process ζ de�ned with π1 = π̂1, . . . , πn = π̂n is an admissible
Radon-Nikodym density

Under Q, credit spreads α1, . . . , αn are exactly the intensities of
default times
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Hedging and martingale representation theorem

The predictable representation theorem also holds under Q
In particular, if A is an HT measurable payo�, then there exists
H-predictable processes θ̂i, i = 1, . . . , n such that

A = EQ [A | Ht] +
n∑
i=1

∫ T

t

θ̂isdM
i
s.

Starting from t the claim A can be replicated using the self-�nanced
strategy with

the initial investment Vt = EQ

[
e−r(T−t)A | Ht

]
in the savings

account
the holding of δi

s = θ̂i
se
−r(T−s) for t ≤ s ≤ T and i = 1, . . . , n in the

instantaneous CDS

As there is no charge to enter a CDS, the replication price of A at
time t is Vt = EQ

[
e−r(T−t)A | Ht

]
Dynamics hedging of CDO tranches in Markovian set-ups
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Hedging and martingale representation theorem

A depends on the default indicators of the names up to time T

includes the cash-�ows of CDO tranches or basket credit default
swaps, given deterministic recovery rates

In principle, the dynamics of a traditional CDS can also be described
in terms of the dynamics of instantaneous CDS

Can be used to replicate a CDO tranche with traditional CDS

Involve the inversion of a linear system
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Hedging and martingale representation theorem

Risk-neutral measure can be explicitly constructed

We exhibit a continuous change of probability measure

Predictable representation theorem implies completeness of the
credit market

Perfect replication of claims which depend only upon the default
history with CDS on underlying names and default-free asset
Provide the replication price at time t

But does not provide any practical way of constructing hedging
strategies

Need of a Markovian assumption to e�ectively compute hedging
strategies
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Markovian contagion model

Pre-default intensities only depend on the current status of

defaults

αit = α̃i
(
t,N1

t , . . . , N
n
t

)
1t<τi

, i = 1, . . . , n

Ex : Herbertsson - Rootzén (2006)

α̃i
(
t,N1

t , . . . , N
n
t

)
= ai +

∑
j 6=i

bi,jN
j
t

Ex : Lopatin (2008)

α̃i (t,Nt) = ai(t) + bi(t)f(t,Nt)

Connection with continuous-time Markov chains(
N1

t , . . . , N
n
t

)
Markov chain with possibly 2n states

Default times follow a multivariate phase-type distribution
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Homogeneous Markovian contagion model

Pre-default intensities only depend on the current number of defaults

All names have the same pre-default intensities

αit = α̃ (t,Nt) 1t<τi
, i = 1, . . . , n

where

Nt =
n∑
i=1

N i
t

The model is also referred to as the local intensity model
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Homogeneous Markovian contagion model

No simultaneous default, the intensity of Nt is equal to

λ(t,Nt) = (n−Nt)α̃(t,Nt)

Nt is a continuous-time Markov chain (pure birth process) with
generator matrix :

Λ(t) =


−λ(t, 0) λ(t, 0) 0 0

0 −λ(t, 1) λ(t, 1) 0
. . .

. . .

0 −λ(t, n− 1) λ(t, n− 1)
0 0 0 0 0


Model involves as many parameters as the number of names
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Homogeneous Markovian contagion model

Replication price of a European type payo�

V (t, k) = EQ

[
e−r(T−t)Φ(NT ) | Nt = k

]
V (t, k), k = 0, . . . , n− 1 solve the backward Kolmogorov di�erential
equations :

δV (t, k)

δt
= rV (t, k)− λ(t, k) (V (t, k + 1)− V (t, k))

Approach also puts in practice by van der Voort (2006), Schönbucher
(2006), Herbersson (2007), Arnsdorf and Halperin (2007), Lopatin and
Misirpashaev (2007), Cont and Minca (2008), Cont and Kan (2008),
Cont, Deguest and Kan (2009)
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Homogeneous Markovian contagion model

Computation of credit deltas...

V (t,Nt), price of a CDO tranche (European type payo�)

V I(t,Nt), price of the CDS index (European type payo�)

V (t,Nt) = EQ

[
e−r(T−t)Φ(NT ) | Nt

]
V I(t,Nt) = EQ

[
e−r(T−t)ΦI(NT ) | Nt

]
Using standard Itô's calculus

dV (t,Nt) =
(
V (t,Nt)− δI(t,Nt)V

I (t,Nt)
)
rdt+ δI(t,Nt)dV

I (t,Nt)

where

δI(t,Nt) =
V (t,Nt + 1)− V (t,Nt)

V I (t,Nt + 1)− V I (t,Nt)
.

Perfect replication with the index and the risk-free asset
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Pricing and hedging in a binomial tree

Binomial tree : discrete version of the homogeneous contagion model
 

Λ(t) =






−λ(t, 0) λ(t, 0) 0 0
0 −λ(t, 1) λ(t, 1) 0

. . .
. . .

0 −λ(t, n − 1) λ(t, n− 1)
0 0 0 0 0






k

k + 1

k

k + 2

k + 1

k

λ(t, k)

1-λ(t, k)

λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)

λ(t+ 1, k)

1-λ(t+ 1, k)

Λ(t) =






−λ(t, 0) λ(t, 0) 0 0
0 −λ(t, 1) λ(t, 1) 0

. . .
. . .

0 −λ(t, n − 1) λ(t, n− 1)
0 0 0 0 0






Λ(t) =






−λ(t, 0) λ(t, 0) 0 0
0 −λ(t, 1) λ(t, 1) 0

. . .
. . .

0 −λ(t, n − 1) λ(t, n− 1)
0 0 0 0 0






k

k + 1

k

k + 2

k + 1

k

λ(t, k)

1-λ(t, k)

λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)

λ(t+ 1, k)

1-λ(t+ 1, k)
kk

k + 1k + 1

kk

k + 2k + 2

k + 1k + 1

kk

λ(t, k)λ(t, k)

1-λ(t, k)1-λ(t, k)

λ(t+ 1, k + 1)λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)1− λ(t+ 1, k + 1)

λ(t+ 1, k)λ(t+ 1, k)

1-λ(t+ 1, k)1-λ(t+ 1, k)

Calibration of loss intensities λ(t, k) on a loss surface by forward induction

k

k + 1

k

k + 2

k + 1

k

λ(t, k)

1-λ(t, k)

λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)

λ(t+ 1, k)

1-λ(t+ 1, k)

V (t+ 1, k + 1)

V I(t+ 1, k + 1)

V I(t+ 1, k)

V (t+ 1, k)

V (t+ 2, k + 2)

V I(t+ 2, k + 2)

V (t+ 2, k + 1)

V I(t+ 2, k + 1)

V (t+ 2, k)

V I(t+ 2, k)

k

k + 1

k

k + 2

k + 1

k

λ(t, k)

1-λ(t, k)

λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)

λ(t+ 1, k)

1-λ(t+ 1, k)
kk

k + 1k + 1

kk

k + 2k + 2

k + 1k + 1

kk

λ(t, k)λ(t, k)

1-λ(t, k)1-λ(t, k)

λ(t+ 1, k + 1)λ(t+ 1, k + 1)

1− λ(t+ 1, k + 1)1− λ(t+ 1, k + 1)

λ(t+ 1, k)λ(t+ 1, k)

1-λ(t+ 1, k)1-λ(t+ 1, k)

V (t+ 1, k + 1)V (t+ 1, k + 1)

V I(t+ 1, k + 1)V I(t+ 1, k + 1)

V I(t+ 1, k)V I(t+ 1, k)

V (t+ 1, k)V (t+ 1, k)

V (t+ 2, k + 2)V (t+ 2, k + 2)

V I(t+ 2, k + 2)V I(t+ 2, k + 2)

V (t+ 2, k + 1)V (t+ 2, k + 1)

V I(t+ 2, k + 1)V I(t+ 2, k + 1)

V (t+ 2, k)V (t+ 2, k)

V I(t+ 2, k)V I(t+ 2, k)

CDO tranches and index price computed by backward induction
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Calibration of loss intensities : Number of names : 125, risk-free interest rate :
r = 3%, recovery rate : R = 40%, 5Y credit spreads : 20bps

[0-3%] [0-6%] [0-9%] [0-12%] [0-22%]
18% 28% 36% 42% 58%

Time-homogeneous intensities : λ(t, k) = λ(k), k = 0, . . . , 125
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Market case

Gaussian copula

Comparison with loss intensities calibrated on a �at correlation structure
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Dynamics of CDS index spreads in the Markov chain

Nb Defaults
Weeks

0 14 56 84

0 20 19 17 16
1 0 31 23 20
2 0 95 57 43
3 0 269 150 98
4 0 592 361 228
5 0 1022 723 490
6 0 1466 1193 905
7 0 1870 1680 1420
8 0 2243 2126 2423
9 0 2623 2534 2423
10 0 3035 2939 2859

Explosive behavior associated with upward base correlation curve
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Dynamics of credit deltas equity tranche [0, 3%]

Nb Defaults
Outstanding
Nominal

Weeks
0 14 56 84

0 3.00% 0.541 0.617 0.823 0.910
1 2.52% 0 0.279 0.510 0.690
2 2.04% 0 0.072 0.166 0.304
3 1.56% 0 0.016 0.034 0.072
4 1.08% 0 0.004 0.006 0.012
5 0.60% 0 0.002 0.002 0.002
6 0.12% 0 0.001 0.000 0.000
7 0.00% 0 0 0 0

Deltas are between 0 and 1

Gradually decrease with the number of defaults (concave payo�)

Increase with time (consistent with a decrease of time value)
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Market and theoretical deltas at inception

Market deltas computed under the Gaussian copula model

Uniform bump of index spreads
Market delta = Change in PV of the tranche/ Change in PV of the
CDS index
Base correlation is unchanged when shifting spreads
Standard way of computing CDS index hedges in trading desks

Tranches [0-3%] [3-6%] [3-9%] [9-12%] [12-22%]

Market deltas 27 4.5 1.25 0.6 0.25
Model deltas 21.5 4.63 1.63 0.9 0.6

Dynamics hedging of CDO tranches in Markovian set-ups
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Smaller equity tranche deltas in the Markov chain model

How would we explain this ?

Contagion e�ect : default is associated with a dynamic increase in
dependence

10%

20%

30%

40%

50%

60%

70%

80%

90%

3% 6% 9% 12% 22%

No default
One default
Two defaults

Increasing correlation leads to a decrease in the PV of the equity tranche
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Comparison with results provided by Arnsdorf and Halperin (2007) : BSLP :

Markovian bivariate spread-loss model for portfolio credit derivatives

Tranches [0-3%] [3-6%] [3-9%] [9-12%] [12-22%]
Market deltas 26.5 4.5 1.25 0.65 0.25
BSLP model deltas 21.9 4.81 1.64 0.79 0.38

Computed in March 2007 on the iTraxx tranche

Two dimensional Markov chain, shift in credit spreads, deltas not related to
replication strategies

Tranches [0-3%] [3-6%] [3-9%] [9-12%] [12-22%]
Market deltas 27 4.5 1.25 0.6 0.25
Model deltas 21.5 4.63 1.63 0.9 0.6

Note that our results are quite similar

Equity tranche deltas are smaller in contagion models
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Consistent with results provided by Frey and Backhaus (2007) : Dynamic

hedging of synthetic CDO tranches with spread risk and default contagion

 

VOD : Value-on-default

Much smaller delta in the contagion model than in the Gaussian copula model
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Comparison with results provided by Eckner (2007)

Deltas computed in a Du�e and Garleanu (2001) reduced-form model

Model calibrated on December 2005 CDX data
Spread sensitivity deltas

Tranches [0-3%] [3-7%] [7-10%] [10-15%] [15-30%]
AJD model deltas 21.7 6.0 1.1 0.4 0.1
Market deltas 18.5 5.5 1.5 0.8 0.4
Contagion model deltas 17.9 6.3 2.5 1.3 0.8

Deltas go in opposite direction when comparing with the contagion model

Dynamics hedging of CDO tranches in Markovian set-ups
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Consistent with Feldhütter (2008) empirical study of the a�ne intensity model

Comparison of hedging performance with the Gaussian copula model

Back-test study : Use information at time t+1 to compute hedge ratios at time t

Higher deltas for the equity tranche in the a�ne model compared with the 1F
Gaussian copula

Prediction of (equity tranche) MTM change are better in the intensity model

But results are pre-crisis...
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Empirical results

The recent crisis is associated with joint upward shifts in credit spreads

And an increase in base correlations

Dependence parameters and credit spreads may be highly correlated

Should go in favour of the contagion model but...
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Cont and Kan (2008) perform a similar study for various hedging strategies

Comparison of spread-sensitivity deltas and jump-to-default deltas
Computed using several market models calibrated to the same data
set
Back-test the strategies before and during the crisis

Spread-deltas are very similar across models (5Y Europe iTraxx on 20 September
2006)

Gaussian copula model

Local intensity (contagion model)

BSLP (Arnsdorf and Halperin (2007))

GPL : generalized Poisson loss model

(Brigo et al. (2006))
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Cont and Kan (2008) show rather poor performance of the contagion model
even during the crisis period

However, hedging performance may signi�cantly depend on the calibration
method

Identi�cation problem : several speci�cation of loss intensities may be compatible
with the same set of market data
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And computed deltas are rather sensitive to the calibration of contagion
parameters on quoted CDO tranches

Cont, Deguest and Kan (2009) : Computation of jump-to-default deltas using
di�erent calibration methods (5Y Europe iTraxx on 25 March 2008)

QP : Quadratic programming method

Para : Parametric method (piecewise constant default intensities proposed by
Herbertsson (2007))

EM : Entropy minimization method (Cont and Minca (2008))
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Limited hedging performance of the contagion model may be related to
absence of speci�c spread risk

But incorporating additional risks will create incompleteness

Introducing some Brownian risks on top of jump-to-default risks brings
unclear practical issues

It is not clear how defaults would drive the volatility of credit spreads
Regarding the hedging issue, one can think of using CDS with two
di�erent maturities for each name to cope both with default and
credit spread risks
or using local risk minimization techniques as in Frey and Backhaus
(2008)
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Hedging with individual CDS may perform a better hedge (than hedging with

the index)

Heterogeneous portfolio where some individual spreads are suddenly
widening
Equity tranche very sensitive to idiosyncratic risk

Obviously, beyond the scope of a pure top model

Individual spread-ratios may be very di�erent across names when computed in a
bottom-up approach
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One natural extension of the Markovian contagion model...

CDO Tranches on a portfolio composed with two disjoint sub-groups

Bespoke
Tranche

equity

mezzanine

senior

super 
senior

N
1

t

equity

mezzanine

senior

super 
senior

N
2

t

Nt = N
1

t
+N2

t

n1 n2

Bespoke
Tranche

equity

mezzanine

senior

super 
senior

N
1

t

equity

mezzanine

senior

super 
senior

N
1

t
N
1

t

equity

mezzanine

senior

super 
senior

N
2

t
N
2

t

Nt = N
1

t
+N2

t
Nt = N

1

t
+N2

t

n1n1 n2n2

n1 + n2 = n, Nt = N1
t +N2

t

Dynamics hedging of CDO tranches in Markovian set-ups



Theoretical framework
Homogeneous Markovian contagion model

Empirical results

Empirical results

(N1, N2) is a bivariate Markov chain, simultaneous defaults are precluded

Markovian contagion model

1− λ1(k1, k2)− λ2(k1, k2)
(k1, k2)

λ1(k1, k2)

λ2(k1, k2)

(k1 + 1, k2)

(k1, k2 + 1)

(k1, k2) 1− λ1(k1, k2)− λ2(k1, k2)1− λ1(k1, k2)− λ2(k1, k2)
(k1, k2)(k1, k2)

λ1(k1, k2)λ1(k1, k2)

λ2(k1, k2)λ2(k1, k2)

(k1 + 1, k2)(k1 + 1, k2)

(k1, k2 + 1)(k1, k2 + 1)

(k1, k2)(k1, k2)

Dynamics of sub-index loss processes can be described in a trinomial tree

As in the previous approaches, replication is theoretically feasible

Loss intensities λ1(k1, k2) and λ2(k1, k2) :{
λ1(N1

t , N
2
t ) = (n1 −N1

t )α1(N1
t , N

2
t )

λ2(N1
t , N

2
t ) = (n2 −N2

t )α2(N1
t , N

2
t )

α1 pre-default individual intensity of names in sub-portfolio 1
α2 pre-default individual intensity of names in sub-portfolio 2
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