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1. Introduction

Development of a sound methodology for portfolio credit derivatives

is a challenging problem: size of portfolios, scarcity of data,

contagion- and network effects, spread dynamics . . .

Some progress in recent years. Nonetheless market practice mostly

relies on the static Gauss copula model with its ad hoc techniques

for calibration and risk management.

In this talk we present a new, information-based approach for

constructing portfolio credit risk models. Key ideas/results:

? Nonlinear filtering for deriving dynamics of traded credit derivatives;

default contagion generated via updating of believes.

? Dynamic version of the Hull-White implied copula model.

? Consistent methodology for pricing exotic derivatives (e.g. credit

index options).
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Incomplete-information models: some literature

• Structural credit risk models: [Duffie and Lando, 2001],

[Giesecke and Goldberg, 2004], [Jarrow and Protter, 2004],

[Coculescu et al., 2006] or [Frey and Schmidt, 2006].

• Doubly-stochastic models with incomplete information such as

[Collin-Dufresne et al., 2003], [Schönbucher, 2004],

[Duffie et al., 2006] (empirical focus).

• [Frey and Runggaldier, 2008]. Relation between credit risk and

nonlinear filtering and analysis of filtering problems in very general

reduced-form model; dynamics of credit derivatives not studied.

• Default-free term-structure models: [Landen, 2001]: construction

of short-rate model via nonlinear filtering.
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2. The model

Throughout m firms with default times τi and default indicator

Yt,i = 1{τi≤t}, 1 ≤ i ≤ m; Yt = (Yt,1, . . . , Yt,m).

Several layers of information:

• Underlying factor model Default times τi are conditionally

independent doubly-stochastic random times; intensities are driven

by an unobservable factor X (a random variable or a finite-state

Markov chain).

• Market information. Prices of traded assets are conditional

expectation wrt market information FM := FY ∨ FZ. Z gives

X in additive Gaussian noise. Filtering wrt FM is used to obtain

asset price dynamics and factor structure of asset prices.

• Z not directly observable ⇒ study pricing, model calibration and

hedging for investors who observe only default- and price history.
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Advantages

• Prices are weighted averages of full-information values (the

theoretical price wrt FX ∨ FY ), so that most computations are

done in underlying Markov model. ⇒ numerics relatively easy.

• Rich credit-spread dynamics with spread risk (spreads fluctuate in

response to fluctuations in Z) and default contagion.

Note that dynamic models are necessary for for model-based

hedging and for pricing certain exotic credit derivatives.

• Model has has a natural factor structure with factors given by the

conditional probabilities πk
t = Q(Xt = k | FM

t ) , 1 ≤ k ≤ K.

• Great flexibility for calibration.
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A simulated trajectory

A simulated trajectory of the default intensity (≈ short-term credit spread)

generated within our framework.
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The underlying Markov model

Consider a finite-state Markov chain X with SX := {1, . . . ,K} and

generator QX on some (Ω,F , F, Q) (Q a risk neutral measure).

A1 The default times are conditionally independent, doubly stochastic

random times with (Q, F)-default intensity λi(Xt).

Implications.

• Recall that Yt,j := 1{τj≤t}. The processes Yt,j −
∫ t∧τj

0
λj(Xs−)ds,

1 ≤ j ≤ m, are F-martingales.

• τ1, . . . , τm are conditionally independent given FX
∞; in particular no

joint defaults.

• The pair process (X, Y ) is Markov wrt F
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Examples

Homogeneous model (default intensities of all firms identical).

Intensities are modelled by some increasing function

λ : {1, . . . ,K} → (0,∞); elements of SX thus represent different

states of the economy (1 is the best state and K the worst.)

Global- and industry factors. Assume that we have r̄ different

industry groups. Let SX = {1, . . . , κ} × {0, 1}r; write X0,. . . , X r̄

for the components of X, modelled as independent Markov chains.

Xr is the state of industry r which is good (Xr = 0) or bad

(Xr = 1); X0 represents the global factor. Default intensity of firm

i from industry group r takes the form λi(x) = gi(x0)fi(xr) for

increasing fi and gi.
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Generator QX. Various possibilities; a simple but useful model takes

X to be constant. We call this the dynamic implied copula model

(dynamic extension of [Hull and White, 2006]) or Rosen and

Saunders (2007).
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Market information

Recall that information contained in prices of traded securities is

modelled via observations of some process Z. Formally,

A2 FM = FY ∨ FZ, where the l-dim. process Z solves the SDE

dZt = a(Xt)dt + dBt.

Here, B is an l-dim standard F-Brownian motion independent of

X and Y , and a(·) is a function from SX to Rl.

Notation. Given a generic RCLL process U , we denote by Û the

optional projection of U w.r.t. the market filtration FM ; recall that

Û is a right continuous process with Ût = E(Ut|FM
t ) for all t ≥ 0.
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Traded securities.

We consider N liquidly traded credit derivatives with maturity T and

FY -adapted cumulative dividend processes D1, . . . , DN .

Examples.

• Defaultable zero-bond on firm i: Dt,i = 0, t < T ; DT,i = 1−YT,i.

• CDS with fixed spread x: Dt =
∫ t

0
dYs,i − x

∑
tn≤t ∆tn (1− Ytn,i)

We use martingale modelling to construct the model and let r = 0
for simplicity. Formally:

A3. Prices of traded credit derivatives are given by

p̂t,i := EQ
(
DT,i −Dt,i | FM

t

)
.
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Market-pricing and nonlinear filtering.

For simplicity we assume deterministic recovery rates.

Define the full-information value of the traded securities by

EQ
(
DT,i −Dt,i | Ft

)
. Recall that (X, Y ) is Markov w.r.t. F ⇒ for

typical credit derivatives full information value is given by some

function pi(t, Xt, Yt).

We get from iterated conditional expectations

p̂t,i = E
(
E(DT,i −Dt,i|Ft) | FM

t

)
= E

(
pi(t, Xt, Yt)|FM

t

)
. (1)

Evaluation of (1) is a typical nonlinear filtering problem: we need to

determine the conditional probabilities πk
t = Q(Xt = k | FM

t ) or,

more generally, the conditional distribution of Xt given FM
t
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Example: a CDS contract

Consider a CDS with fixed spread xCDS and LGD δ. Full information

value in t is given by (1− Yt,i)
(
V def(t, Xt)− xCDSV prem(t, Xt)

)
,

where

V def(t, k) = E
( ∫ T

t

λ(Xs)δe−
∫ s
t λ(Xu)du ds | Xt = k

)
,

V prem(t, k) =
∑
tk≥t

E
(

exp(−
∫ tk

t

λ(Xs) ds) | Xt = k
)

.

On {τ > t} the market value of the contract is thus given by

K∑
k=1

πk
t V def(t, k)− xCDS

K∑
k=1

πk
t V prem(t, k) .
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Computation of full-information values.

Many possibilities:

• Bond prices or legs of a CDS can be computed via Feynman-Kac

• For portfolio products such as CDOs we can use conditional

independence and compute Laplace transform of portfolio loss,

(as in [Graziano and Rogers, 2006]) or use Poisson- and normal

approximations, combined with Monte Carlo.

• Often compact formulas can be given involving the matrix

exponential of QX or of the generator matrix of (X, M) (M

the number of defaults); joint work with A. Herbertsson
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3. Dynamics of Security Prices

The following two processes will drive the model in the market

filtration

Mt,j := Yt,j −
∫ t∧τj

0

̂λj(Xs−)ds , j = 1, · · · ,m

µt,i := Zt,i −
∫ t

0

âi(Xs) ds , i = 1, · · · , l.

Properties.

• Mj is an FM-martingale and µ is FM-Brownian motion.

• Every FM-martingale can be represented as stochastic integral wrt

M and µ.
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Filtering

Define the conditional probability vector πt = (π1
t , . . . , π

K
t )> with

πk
t := Q(Xt = k|FM

t ). πt is the natural state variable; in particular,

prices of traded assets are linear functions of πt.

Kushner-Stratonovich equation. (K-dim SDE-system for π) Let

q(ι, k), 1 ≤ ι, k ≤ K denote generator matrix of X. Then

dπk
t =

K∑
ι=1

q(ι, k)πι
tdt + (γk(πt−))> dMt + (αk(πt))> dµt , with

(2)

γk
j (π) = πk

( λj(k)∑K
n=1 λj(n)πn

− 1
)
, 1 ≤ j ≤ m, (3)

αk(π) = πk

(
a(k)−

K∑
n=1

πna(n)
)

. (4)
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Default contagion

At τj the default intensity (≈ short-term credit spread) of surviving

firm i jumps by

∆λ̂i(τj) =
K∑

k=1

λi(k) · πk
τj−

(
λj(k)∑K

l=1 λj(l)πl
τj−

− 1
)

(5)

=
covπτj−

(
λi, λj

)
Eπτj−(λj)

. (6)

Note that strength of contagion is greatest

• for firms with similar characteristics (high correlation of λi and λj)

• for a-priori distribution πτj− with a large variance (large incertitude

about true state).

16



Security-price dynamics

Theorem 1. Under A1 - A3 the discounted cum-dividend price

process ĝt = p̂t + Dt of the traded assets has the martingale

representation

ĝt,i = ĝ0,i +
∫ t

0

γ ĝi,>
s dMs +

∫ t

0

αĝi,>
s dµs, with

αĝi
t = p̂t,i · at − p̂t,i ât,

γĝi
t,j =

1

(λ̂j)t−

(
(p̂iλj)t− − p̂t−(λ̂j)t− + (R̂gi,jλj)t−

)
and

Rgi,j
t = pi(t, Xt, Y

j
t )− p(t, Xt, Yt) + ∆Dτj,i.
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Predictable quadratic variations of the asset prices FM satisfy

d〈ĝi, ĝj〉M
t = vij

t dt with

vij
t =

m∑
n=1

γĝi
t,n γ

ĝj
t,n λ̂t−,n +

l∑
n=1

αĝi
t−,nα

ĝj
t−,n. (7)
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4. Pricing and Calibration

Define price of a nontraded claim H as Ht := EQ(H|FM
t ). We

distinguish two types of claims.

Options on the loss state. Here H is given by a function of the default

state at maturity (eg. basket swaps or bespoke CDOs.) Let

h(t, Xt, Yt) = E(H | Ft). We get from iterated conditional

expectations
Ht =

∑K

k=1
πk

t h(t, k, Yt),

i.e. the price depends only on πt and on hypothetical value h(·).

Options on traded assets. Here H is of the form h̃(YT̃ , p̂T̃ ,1, . . . , p̂T̃ ,N)
at T̃ < T . (eg. CDS index options). Since (Y, π) is FM-Markov,

Ht = E
(
h(YT̃ , p̂1,T̃ , . . . , p̂N,T̃ )|FM

t

)
= h(t, Yt,πt),

but now price depends on dynamics of π as well.
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Calibration for secondary market investors

Two separate tasks

• In order to use the pricing formulas investors need to determine

current value of unobservable factor πt by “matching” market and

model prices. Two approaches:

? Standard (pragmatic) calibration using linear or convex

programming

? Calibration via filtering [Frey and Runggaldier, 2008]

• Determine the drift a(·) of Z (and generator QX). a(·) largely

governs dynamics of πt and hence of asset prices. Largely an

econometric problem; possible approach: EM-algorithm
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Application to itraxx-tranches

We concentrate on models where X is constant ⇒ Pricing and

calibration of CDOs similar as in Hull-White (2006) or Rosen

Saunders (2007) (but hedging is different!)

Example 1. Calibrate homogeneous version to itraxx data from

various years (pre-crisis and during credit crisis). We obtained very

good fit for all data sets. Note the increase in the implied probability

of the extreme scenario λ = 70% (5 year PD ≈ 96 %).

λ (in %) 0.01 0.3 0.6 1.2 2.5 4.0 8.0 20 70

π∗, data from 2004 12.6 22.9 42.0 17.6 2.5 1.45 0.54 0.13 0.03
π∗, data from 2006 22.2 29.9 39.0 7.6 1.2 0.16 0.03 0.03 0.05
π∗, data from 2008 1.1 7.9 57.6 10.8 11.7 4.9 1.26 1.79 2.60
π∗, data from 2009 0.0 13.6 6.35 42.2 22.3 12.5 0.0 0.00 3.06

Components of π∗ are given in percentage points.
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3d-Representation
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Simulated trajectory of πt
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Credit Index Options

Payoff. A payer credit index option gives the right to enter into a

CDS index as protection buyer at T̃ for a predetermined spread K

(the strike). Moreover, there is front-end protection: upon exercise

the holder receives the losses in the portfolio between inception and

maturity T̃ .

• Payoff depends on CDS-index spread at T̃ and hence on price of

traded security

• Market pricing approach: assume (adjusted) spreads are lognormal

after clever change of numeraire and apply Black formula.

(Pedersen(2003), Brigo-Morini(2007)). The portfolio loss is not

explicitly modelled.
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Credit Index Options

Our approach provides a model for the joint evolution of portfolio

losses and (index) spreads. Prices are computed via Monte carlo

simulation.

Numerical results. We used 4 states, λ ∈ {0.01, 0.02, 0.04, 0.1}.
Model was calibrated to CDS index spread S∗. Prices are quoted as

implied volatility computed via the Pedersen(2003) approach.

moneyness K/S∗ 0.8 1.0 1.4

implied vol, π = (0.25, 0.53, 0.07, 0.15) 1.13 1.31 1.49

implied vol, π = (0.20, 0.24, 0.56, 0.001) 0.55 0.56 0.46

Wide range of levels and smile patterns can be generated by varying

π and the values of λ.
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5. Dynamic Hedging

Consider some claim H with price process ĥt. Look for

risk-minimizing strategies as in [Föllmer and Sondermann, 1986].

• Allows to address potential incompleteness of the market.

• Tractable criterion (related to Kunita-Watanabe decomposition).

We seek a representation ĥt − ĥ0 =
∑n

j=1

∫ t

0
θH

s,j dp̂s,j + Lt such

that the remaining risk (conditional error variance)

E
(
(LT − Lt)2 | FM

t

)
is minimized simultaneously for all t.

Proposition 2. We have θH
t = v−1

t
d
dt〈ĥ, p̂〉M

t , vt the instantaneous

predictable quadratic variation of the traded assets.

All ingredients are readily computed.
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Example: hedging CDO-tranches with the index

Tranche [0-3] [3-6] [6-9] [9-12] [12-22]

low spread volatility

π calibrated to 2004 data 0.3249 0.1097 0.0749 0.0614 0.1462
π calibrated to 2006 data 0.2404 0.0684 0.0427 0.0340 0.0973
π calibrated to 2008 data 0.0674 0.0376 0.0359 0.0342 0.1073

high spread volatility

π calibrated to 2004 data 0.6592 0.1471 0.0842 0.0604 0.1144
π calibrated to 2006 data 0.6799 0.0958 0.0418 0.0243 0.0555
π calibrated to 2008 data 0.0948 0.0516 0.0436 0.0370 0.1055

Risk-minimizing hedge ratio θ for hedging a CDO tranche with the

underlying CDS index
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6. Calibration via filtering

Here we assume that FI = FY ∨ FU where U solves the SDE

dUt = p̂tdt + dWt = p(t, Xt, Yt)πtdt + dWt

for a Brownian motion W independent of X, Y, Z. U can be viewed

as cumulative noisy price information of traded assets p̂1, . . . , p̂N

(noise reflects observation- and model errors.)

Recall that π solves the KS-equation (2). ⇒ finding conditional

distribution of πt given FI
t is a nonlinear filtering problem with

signal process π and observation processes U and Y .

Analysis of filtering problem. Challenges: observations of mixed

type; high dimension of state process; joint jumps of π and Y .

Numerical treatment via particle filtering, see

[Frey and Runggaldier, 2008].
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A. Outlook

• Practical issues: further numerical work on hedging and on pricing

of exotic credit derivatives; extension to inhomogeneous portfolios

and to models with QX 6= 0; performance of hedging strategies

and model risk.

• Consider models where X has a continuous state space and study

other finite-dimensional approximations to the filtering problem

• Filtering methods/EM algorithm for calibration and estimation of

model parameters QX and in particular a(·).

• Extension of previous methodology to other markets, in particular

markets for corporate securities or default-free term-structure

models.
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[Schönbucher, 2004] Schönbucher, P. (2004). Information-driven default
contagion. Preprint, Department of Mathematics, ETH Zürich.
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