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Toy Model

Toy Model

Let us study the case with two random times 77, 75.

For ¢ = 1,2, we denote by (H!,t > 0) the default process associated
with T, i.e., H; — ﬂ{ﬂgt}-

The filtration generated by the process H* is denoted H* and the
filtration generated by the two processes H', H? is H = H' v H?.
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Toy Model

Any H-adapted process Z admits a representation as

Zt — hO (t)]]-t<7'1/\7'2 +h1 (ta 7-1>1]-7'1 <t<To +h2 (ta 7-2)]17'2 <t<m +h(7-17 7-2>]]-7'1 V1o <t
where hq, h1, ho, h are (deterministic) functions.

We denote by G(t,s) = Q(7y > t, 7 > s) the survival probability of the
pair (71, 72) and we assume that the joint law of (7, 73) admits a

density f(u,v).

We denote by 0;G, the partial derivative of G with respect to the i-th

variable, 1 = 1, 2.

Simultaneous defaults are precluded in this framework, i.e,
Q(Tl = ’7'2) — O




Toy Model

The process M*! defined as

tANTINT tAT
72 001G (s, s) ! f(s, 1)
M} = H1+/ : ds+/ : ds
' ' 0 G(S7S) tAT1I AT aQG(S7T2)

is a H-martingale.




Toy Model

The processes H} — fot A\ids, i = 1,2, are H-martingales, where

At

where

P(rm € dt|/Hs, 71 > )

1 0 —01G(t,1) o f(t,T)
(1—Hy) <(1 ~ )Gy 82(}(75,72))

(1— H)(1— HON + (1 — HYHZA, (12)

2 1 _32G(tat) 1 f(7-17t)
<1_Ht>(<1_Ht> G(t,t) _HtalG(ﬁ,tO

(1— H)(1— H)X? + H (1 — H)N (1)




Toy Model

The goal is to find the dynamics of Z; := E(h(7y, 72)|H;) and to give an
hedging strategy based on CDSs

The price of the contingent claim h(7y,72) is
Zt = h(Tl, TQ)HtlHtZ —+ wl,o(’ﬁ, t)Hg(l — Ht2> + ¢0,1(t, TQ)HE(]_ — Htl)
+(1— H;)(1 — H} )vo,0(t)

with
1 00
77D1,0(1L7 t) — (91G(’UJ, t) /t h(uv U)f(uv /U)d/U
Yo1(t,v) = 82G_1 / h(u,v) f(u,v)du

du

dvhuv f(u,v)

Yo,0(t) =




Toy Model

It can be proved that
dZt = ((h(t, 7'2) — wojl(t, TQ))HE + (wl,o(t, t) — wo,o(t»(l — HE))thl

+((h<ﬁ, t) — ro(71,t) Hy + (Y0,1(t,1) — Yo,0(t)) (1 — Htl))de
= mdM; +m dM;

where
1 00
Grolunt) = gz [ Ao
doa(tv) = 62(;1 /Oohcu o), )

du dvhuv (u,v)

Yo,0(t) =




Toy Model

We consider a CDS
e with a constant spread

e which delivers d(7y) at time 71 if 71 < T', where ¢ is a deterministic

function.

The value of the CDS is, for t < 7

Vi = Wper, E((11) Uy <o—( (TAT) =) [Hy) = Vill ey + Vi 2 (72) g1y <y

T
Vi = </5 101G (u, t) du — K Gutd)
T T
VP(s) = </ 5(u usdu+n/ aQG(u,s)du>.
¢

where




Toy Model

The dynamics of the price of the CDS are
WV, = (1= H}) (k=00 (1= HOX + HIN () ) dt
~VidM; + (1= H) (VP (1) — Vio)dM7
The dynamics of the cumulative price of the CDS are

AV = (5(t) — V™ AME 4+ (1 — HY) (VP (t) — Vio )dM?




Toy Model

Assume now that a CDS written on 75 is also traded in the market, and
that the interest rate is null. We denote by V*, i = 1,2 the prices of the
two CDSs.

A self financing strategy consisting in ¥ shares of CDS’s and 9 shares

of savings account has value X; = 99 + 9V, +97V;? and dynamics
X, = (=9t +9i0 - B @) - V) am;
+ (01— BV P (0) = V) - 03V ) dM;
= (X} — X )dM, + (X7 — Xy )dM}

where we have taken into account that CDSs are paying dividends and
X} =99+ (1= BBV (0).

10



Toy Model

In order to hedge Z = E(Z) + fOT nrdM} + fOT n2dM?, it remains to
solve the linear system (with unknown ")
—0 Vil + (- H) V() - V) =
0H1 = HO(V ()~ V) -0V =

11



Toy Model

Ordered Defaults

Let us now assume that 71 < 75, a.s. In that case, G(t,s) = G(t,t) for

s <,

tAT tAT
L 01G(s, 8) L fi(s)
M1:H1+/ ’ d:Hl—/ d
T TGss) T T )y Ga(9)”

where

G1(s) = Q(m > s) (s,5) / fi(u

The process M is H'-adapted, hence is an H'-martingale and it follows
that any H'-martingale is a H martingale. Furthermore, the intensity of

To vanishes on the set ¢ < 7 and

tATo
M2:H2—|—/ f<7-178> dS
! ! t\/Tl 81G(7—17 )
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Toy Model

Let V* be the price of a CDS on 7;, with spread x; and recovery 6;.
The H-dynamics of V! is

dV;' = — VL dM}! + (1 — HN (k1 — 61(0) A (2))dt

with A (£) = éll(ft)).

The H-dynamics of V2 is

AV? = —VZ2 dM2+(1—H?)kodt—(1—H2)H} 55 ()N (7)) dt+ (VA ()= V2 )M}
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Toy Model

More than two defaults

In the filtration generated by three default processes,

1 T 12 13
V;t — ‘/;ﬂt<7'1/\7'2/\73+‘/t (7_2)]17'2§t<7'1/\73+‘/t (7_3)117'3§t<7'1/\72

1|23
—i_‘/t (7_277-3)]]-7'2\/7'3§t<7'1

where
1 g r
TAR Gt D <—/t O(u)0hG(u,t,t)dt — m/t G(u,t,t)du) :
1/2 —1 L T
Vi (z) = Gt 1) (/t 0(u)010:G(u, z,t)du + /i/t 82G(u,a:,t)du>
1|3 —1 r T
‘/t (y) — 83G(t, £ y) </t 5(U)8183G(U, t y)du + /i/t aSG(U, t, y)du>

T T
1]23 B 1 B
Vvt (:C7 y) — 8283G(t, T, y) </t 5(u)f(’u,, €L, y)du K;/t 8283G(U, €L, y)dU)
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Toy Model

and the price of the CDS follows

dV, = (1—HMrdt— (1—HHo@)(1— H?)(1 — H)N\ dt
(1= BD() [(1 = B HIN P (73) + (1= HP)HEN P () |
—(1— HOYHZ2H35()\ 1 (12, 75)dt
~ViedM} + (1= HY) (1= BV () + PV (1) = Vi ) d
(1= ) (1= BV (1) + B2V (r) = Vi)

where the intensities are given by

—1

-
M= ety
H25) = | T L S W WTr
A7 (s) 82G(t,s,t)8182G(t’S’t)’ A7 (s) 5:C0.1.5) % (t,t, )
)\i|23(82’ 55) = f(t,s2,53)

0205G(t, 52, 53)
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Toy Model

More generally, the value of the contingent claim h(7y, 72, 73) is

Y000 (£) Lt <y ArgArs
+  Yoo1(t, T3) Mg <t<rinrm + Yor0(t, T2) Ly <t<rinrs + Y100t T1) Ly <t<ronrs
+  Yo11(t, T2, T3) Ny yrs<t<r, + Y110(t, T1, T2) L vy <t<rs

+ wlOl (t, 71, 7_3)]17'1 V13 <t<to + h(Tla T2, 7_3)]17'1\/7'2\/7'3 <t

where

T T T
Yooo(t) = G(t,lt,t)/t du/t dv/t dwh(u, v, w) f(u, v, w)

T
Yoo1(t,s) = du/ dvh(u, v, s) f(u,v, s)
[
T

1 T
aSG(ta ta S) /t
1

Yo11(t, s2,83) = 8283G(t,32,33)/t duh(u, s2, s3) f(u, 52, 53)

and similar expressions for the remaining terms.
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Density Hypothesis, Single default

Density Hypothesis, Single default

Let (2, A,F,P) be a filtered probability space.
A strictly positive and finite random variable 7 (the default time) is

given. We assume the following density hypothesis:
Gt(ﬁ) = IP)(T > Glft) — / ft<U)d’LL
0

Let
Gt = Gt(t) = P(T > t|Ft) — / ft(u)du

In what follows, we assume G; > 0.

With N. El Karoui and Y. Jiao 17



Density Hypothesis, Single default

The family f;(.) is called the conditional density of 7 given F;.
Note that

o G4(0) =E(Gy|F;) for any 0 >t
o the law of 7 is P(T > 0) = [~ fo(u
o for any t, [, fi(uw)du=1

e For an integrable Fr ® o(7) r.v. Yp(7), one has, for t < T

E(Yr(r)| ) = E( / " V() fr(w)dul F)

Gi(0) :=P(r > 0|F) = [, fe(u)du 18



Density Hypothesis, Single default

The process

tAT
Lircpy — / Ao ds
0

F fS(S)
Ay = G

G admits the multiplicative decomposition

is a G-martingale, where

t \F
G, = [Fe I Xias

where L' is an F-martingale. Conversely, if Gy = n.e~'* where n is an
F-martingale and I' a continuous increasing process, then ll;.<;3 — I'iar

is a G-martingale.

Gi(0) :=P(r > 0|F) = [, fe(u)du 19



Density Hypothesis, Single default

Pricing formulae

Terminal payoft X € Fr:

1
E(XW77|Gt) = ﬂt<TaE<GTX|Ft)

Recovery

1 T 1 g
B(Z L i<rerlG) = Uicr g B— [ Zu0GulF) = icr B[ Zufulw)dul)
t t

Gi(0) :=P(r > 0|F) = [, fe(u)du 20



Density Hypothesis, Single default

Problem: given a martingale n and an increasing process I' (such that

0<ne It < 1), construct 7 such that Gy = ne L.
If n = 1, this is the Cox model.

In a general case, the problem admits various solutions.

Gi(0) :=P(r > 0|F) = [, fe(u)du 21



Density Hypothesis, Single default

Immersion property

Immersion property holds if any [F-martingale is a G-martingale. It is

equivalent to

fi(s) = fs(s),Vt > s

Gi(0) :=P(r > 0|F) = [, fe(u)du 22



Density Hypothesis, Single default

Forward intensity

The forward intensity A\:(0) of 7 is given by A:(0) = —0p In G4(0)

G1(0) = exp(— / A1) du)

We assume that F is a Brownian filtration. There exists W(¢,6) such
that

2. \(0) = fo s, 0)dW, —I—fo YU (s, 0)ds;
3. Gy = exp (— f(f Nods + fot U(s,s)dWy — %fot U2 (s, s)ds);

where (¢, 0) fo

Gi(0) :=P(r > 0|F) = [, fe(u)du

23



Density Hypothesis, Single default

Example: “Cox-like” construction. Here
e ) is a non-negative F-adapted process, A; = fg AgdsS
e O is a given r.v. independent of F,, with unit exponential law

e VV is a F,, -measurable non-negative random variable

o T =inf{t: Ay > OV}

For any 6 and ¢,

A
Gi(0) =P(r > 0|F;) =P(Ag <OV |F;) =P (exp —76 > e

© ]—"t).

Let us denote exp(—A;/V) =1 — fo sds, with

Ve = (As/V) exp — /0 "0/ V) du

and define 7,(s) = E (1] 7). Then, fi(s) = 7:(s)/70(s).

24



Density Hypothesis, Single default

Backward construction of the density
Let ¢(+, @) be a family of densities on R, depending of some parameter

and X € F. a random variable. Then

/ o(u, X)du =1
0
and we can choose

fr(u) = E(foo (u)|Fr) = E(p(u, X)|F)

25



Density Hypothesis, Single default

G-martingale characterization

A cadlag process Y© is a G-martingale if and only if there exist an
F-adapted cadlag process Y and an F; ® B(R™)-optional process Y;(.)
such that

Y = Yilron + Yi(7)lr<y

and that
o (V;G:+ fg Ys(s)fs(s)ds, t > 0) is an F-local martingale;
o (Y:(0)f:(0),t > 0) is an F-martingale.

26



Density Hypothesis, Single default

Girsanov theorem

Let Z7 = ztlirsiy + 2e(7) <4y be a positive G-martingale with
Z& =1andlet Z = z,G; + fo zi(u) fi(u)du be its F projection.
Let Q be the probability measure deﬁned on G; by dQ = ZZdP.

Then, f2(6) = f,(0) th<§>7 and:

(i) the Q-conditional survival process is defined by Gy = Gt ZF

t
(i) the (F, Q)-intensity process is \,’ )\F i ), dt- a.s.;
2t —

(iii) L¥© is the (F,Q)-local martingale

t
Ly LFZ— exp/ (AEQ — \Nds
0

t

27



Density Hypothesis, Single default

The change of probability measure generated by the two processes

_ Jo(0)
fe(0)

provides a model where the immersion property holds true, and where

2= (L)7Y  z(0)

the intensity processes does not change

28



Several Defaults

Several Defaults

We introduce the conditional joint survival process Gy(u,v) by setting,

for every u, v, t,
Gt(u,v) = P(Tl > U, To > U’ft).

We assume that the conditional joint density f;(u,v) = 012G¢(u,v)

with respect to v and v exists: G¢(u,v) can be represented as follows

(u,v) /dw/ dy fi(x,y).

29



Several Defaults

The process

tAT1IN\T2 . tAT1
M} =H} - / AL du — / A2 (u, ) du,
0 t

ANT1/N\To

is a G-martingale, where

Ti 0iGi(1,1) 1]2 fe(t, s)
— — t —
A Gt N =g s
Toy model:
N 0;G(t,¢) 1]2 f(t,s)
v - — t - —
At A A e T
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Several Defaults

CDS price

Let
V;t — ‘Zﬂt<7'1/\7'2 + ‘2(72)]17'2<t<7'1

The dynamics of the price of a CDS are
WV = (= H}) (5=0)((1 = BN + B2 P () ) dt
~ViedM} + (1= H) (VP () = Vi )dM?

+ (1—HH((1 = H)o} + HEo, P () dW,

Toy model
v, = (1= HE) (k=@ (1= BN + HINP (1)) ) dt

~Vi_dM} + (1 — HHY(V,}P () — Vi )dM?

31



Several Defaults

V, =

Toy Model

1
Ge(t, )

(_ /tT 0(u)01Gy(u,t) du — K/tT G (u,t) du) .
( /tT 0(u)01G(u,t) du — /s/tT G(u,t) du) .
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Several Defaults

1
V1|2 S) =
() 52Ci(
Toy model
1
‘/751\2(8) _

. <— /tT o(u) fe(u, 5) du—m/tT 02Gy(u, s) du),

0> G(

t, 5) < /tTCS(U)f(Ua s) du—/f/tTé’gG(u,s) du) .
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Several Defaults

Volatility

From PRT, there exists g such that

t
Gi(u,v) = Go(u,v) +/ gs(u,v) dWs,
0

The volatility is given by

of = _Gt(lt,t) (/t (5(u) O1g:(u,t) + /ﬁsgt(u,t)) du —I—gt(t,t)vt)
ol?(t,s) = 6’2G_t(1t, 5 (/t d(u)0129: (u, 8)du + li/t Bagi(u, s) du + V, 020, (¢, 5))

and the G-Brownian motion /V[7 satisfies

tATINT tAT
= F gs<57 S) / ' 6298(33 7_2)
W T — W T - dS - dS
" " »A G3(87 S) ) tAT1IN\T2 a2GS(S7 7-2)
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Several Defaults

THANK YOU FOR YOUR ATTENTION
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