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Motivating Example

2 weeks before bankruptcy (9/02/2008) Lehman Brothers (LEH)
stock price price was $16.13
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46 days (10/18/2008)
137 days (1/17/2009)
228 days (4/18/2009)
501 days (1/16/2010)

The stock price drop of 72% from the high $62.19 to $16.13!

Open Interest on Put contracts with strike prices K = 2.5 USD

Maturing on 4/18/2009 (228 days) were 1529 contracts
Maturing on 1/16/2010 (501 days) were 2791 contracts
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The Case for the Next Generation of Unified
Credit-Equity Models

Put options provide default protection. Deep out-of-the-money puts
are essentially credit derivatives which close the link between equity
and credit products.

Pricing of equity derivatives should take into account the possibility of
bankruptcy of the underlying firm.

Possibility of default contributes to the implied volatility skew in stock
options.
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Research Goals

Unified Credit –Equity Framework

Credit and equity derivatives on the same firm 
should be modeled within a unified framework

� Consistent pricing across Credit and Equity assets

� Consistent risk management and hedging
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Credit and equity derivatives on the same firm 
should be modeled within a unified framework

� Consistent pricing across Credit and Equity assets

� Consistent risk management and hedging

Our Goal is to develop
analytically tractable unified credit-equity models 

to improve pricing, calibration, and hedging

� Analytical tractability is desirable for fast computation of prices 
and Greeks, and calibration.
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Our Contributions

We introduce a new analytically tractable class of credit-equity
models.

Our model architecture is based on applying random time changes to
Markov diffusion processes to create new processes with desired
properties.

We model the stock price as a time changed Markov process with
state-dependent jumps, stochastic volatility, and default intensity
(stock drops to zero in default).

For the first time in the literature, we present state-dependent jumps
that exhibit the leverage effect:

As stock price falls V arrival rates of large jumps increase
As stock price rises V arrival rate of large jumps decrease
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Our Contributions (cont.)

In our model architecture, time changes of diffusions have the following
effects:

Lévy subordinator time change induces jumps with state-dependent
Levy measure, including the possibility of a jump-to-default (stock
drops to zero).

Time integral of an activity rate process induces stochastic volatility
in the diffusion dynamics, the Levy measure, and default intensity.
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Unifying Credit-Equity Models

The Jump to Default Extended Diffusions (JDED)

Before moving on to use time changes to construct models with jumps and
stochastic volatility, we review the Jump-to-Default Extended Diffusion
framework (JDED)
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Jump to Default Extended Diffusions (JDED)
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We assume absolute priority: the
stock holders do not receive any
recovery in the event of default

Compensates for the jump-to-default and ensures the discounted
martingale property
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Prior to τ0 default could also arrive by a jump-to-default ζ̃ with
default intensity h(S̃),

ζ̃ = inf
{

t ∈ [0, τ0] :
∫ t
0 h(S̃u) ≥ e

}
, e ≈ Exp(1)

V At time ζ̃ the stock price St jumps to zero and the firm defaults
on its debt
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Contingent Claims

.
Risk Neutral Survival Probability (no default by time T)
..

.

. ..

.

.

Q (S , t; T ) = E
[
1{ζ>T}

]
= E

[
e−

R T
t h(Su)du︸ ︷︷ ︸ 1{τ0>T}︸ ︷︷ ︸

]
Recall: Default time ζ = min

(
ζ̃, τ0

)
.

1 No jump-to-default before maturity T,

2 Diffusion does not hit zero before maturity T.
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Contingent Claims

.
Defaultable Zero Coupon Bond (at time t)
..

.

. ..

.

.

B (S , t;T ) = e−r(T−t)Q (S , t;T )︸ ︷︷ ︸
Disc. Dollar if

No Default occurs
prior to maturity

+ e−r(T−t)R [1 − Q (S , t; T )]︸ ︷︷ ︸
Disc. recovery R ∈ [0, 1]

if Default occurs
before maturity T

Recall:Q (S , t; T ) is the risk neutral survival probability

R is a fraction of a dollar paid at maturity.

Defaultable bonds with coupons are valued as portfolios of
zero-coupon bonds

.
Call Option
..

.

. ..

.

.

C (S , t; K , T ) = e−r(T−t)E
[
e−

R T
t h(Su)du (ST − K )+ 1{τ0>T}

]
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Contingent Claims

.
Put Payoff (Strike Price K > 0)
..

.

. ..

.

.

(K − ST )+ 1{ζ>T}︸ ︷︷ ︸
Put Payoff

given no default
by time T

+ K1{ζ≤T}︸ ︷︷ ︸
Recovery amount K

if default occurs
before maturity T

.
Put Option Price
..

.

. ..

.

.

P (S , t; K , T ) = e−r(T−t)E
[
e−

R T
t h(Su)du (K − ST )+ 1{τ0>T}

]
+ Ke−r(T−t) [1 − Q (S , t; T )]

NOTE. A default claim is embedded in the Put Option
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Jump-to-Default Extended Constant Elasticity of
Variance (JDCEV) Model

.
The JDCEV process (Carr and Linetsky (2006))
..

.

. ..

.

.

dSt = [µ + h(St)]St dt + σ(St)St dBt , S0 = S > 0

σ(S) = aSβ

CEV Volatility
(Power function of S)

h(S) = b + c σ2(S)

Default Intensity
(Affine function of Variance)

a > 0 ⇒ volatility scale parameter (fixing ATM volatility)
β < 0 ⇒ volatility elasticity parameter
b ≥ 0 ⇒ constant default intensity
c ≥ 0 ⇒ sensitivity of the default intensity to variance

For c = 0 and b = 0 the JDCEV reduces to the standard CEV process
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σ(S) = aSβ

CEV Volatility
(Power function of S)

h(S) = b + c σ2(S)

Default Intensity
(Affine function of Variance)

The model is consistent with:

leverage effect V S ⇓→ σ(S) ⇑
stock volatility–credit spreads linkage V σ(S) ⇑↔ h(S) ⇑
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An Application of Jump to Default Extended
Diffusions (JDED)

Equity Default Swaps under the JDCEV Model

Rafael Mendoza (McCombs) Unified Credit-Equity Modeling Credit Risk 2009 18 / 1



Equity Default Swaps (EDS)

Credit-Type Instrument to bring protection in case of a Credit Event

Credit Events:

1 Reference Entity Defaults
2 Reference Stock Price drops significantly (L = 30%S0)

Similar to CDS

Protection Buyer makes periodic Premium Payments on exchange of
protection in case of a Credit Event.
Protection Seller pays a recovery amount (1 − r) for each dollar of
principal at credit event time, if the event occurs prior to Maturity.
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Equity Default Swaps (EDS)

Equity Default Swap
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Equity Default Swaps (EDS): Balance Equation
We want to obtain the EDS rate ϱ∗ that balances out:

ϱ∗ = {ϱ |PV(Protection Payment)=PV(Premium Payments + Accrued Interest)}

Define: Credit Event Time V T∆
L = min{first hitting time to L, Default Time}

PV(Protection Payment) (1 − r) · E
[
e−r ·T∆

L 1{T∆
L ≤T}

]
PV(Premium Payments) ϱ · ∆t ·

∑N
i=1 e−r · ti E

[
1{T∆

L ≥ ti}

]
PV(Accrued Interests) ϱ · E

[
e−r ·T∆

L

(
T∆

L − ∆t ·
[

T∆
L

∆t

])
1{T∆

L ≤T}

]

∆t Time Interval
r Recovery
T Maturity

T∆
L Credit Event Time
ϱ EDS rate
r Risk Free Rate

.. Details
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Equity Default Swaps (EDS)

Advantages of EDS over CDS

Transparency on which an EDS payoff is triggered. It is easy to know
whether a firm stock price has crossed a lower threshold (L)

Using the Stock Price as the state variable to determine a credit
event allows investors to have a Exposure to Firms for which CDS are
not usually traded.
(as in the case of firms with high yield debt)

EDS closes the gap between equity and credit instruments since it is
structurally similar to the credit default swap.
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Time-Changing the Jump to Default Extended
Diffusions (JDED)

Under the jump-to-default extended diffusion framework (including
JDCEV), the pre-default stock process evolves continuously and may
experience a single jump to default.

Our contribution is to construct far-reaching extensions by
introducing jumps and stochastic volatility by means of time-changes
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Time-Changing the Jump to Default Extended
Diffusions (JDED)

“Time Changes of Markov Processes in Credit-Equity Modeling”

Rafael Mendoza (McCombs) Unified Credit-Equity Modeling Credit Risk 2009 24 / 1



General Panorama

Continuous
Markov Process

w/ Default Intensity 
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Time-Changed Process Yt = XTt

.
Time Changed Process Construction
..

.

. ..

.

.

Yt = XTt

Xt is a background process (e.g. JDCEV)

Tt is a random clock process independent of Xt

.
Random Clock {Tt , t ≥ 0}
..

.

. ..

.

.

Non-decreasing RCLL process starting at T0 = 0 and E [Tt ] < ∞.
We are interested in T.C. with analytically tractable Laplace Transform (LT):

L(t, λ) = E
[
e−λTt

]
< ∞

1 Lévy Subordinators with L.T. L(t, λ) = e−ϕ(λ)t V induce jumps

2 Absolutely Continuous (A.C.) time changes V induce stochastic
volatility

3 Composite Time Changes V induce jumps & stochastic volatility
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Illustration of Lévy Subordinators
.

Y = XTt where Xt = Bt and Tt = t+ Compound Poisson Process
with Exponential Jumps

..

.

. ..

.

.

Time Changed Process Y(t)=X(T(t))
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When jump in T (t) arrives, the clock skips ahead, and time-changed process is

generated by cutting out the corresponding piece of the diffusion sample path in

which T (t) skips ahead. Jumps arriving at (expected) time intervals 1/α = 1/4 yrs. of (expected) jump size
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Examples of Lévy Subordinators
.
Three Parameter Lévy measure:
..

.

. ..

.

.

ν(ds) = Cs−Y−1e−ηsds

where C > 0, η > 0, Y < 1 .. Details

C changes the time scale of the process (simultaneously modifies the
intensity of jumps of all sizes)
Y controls the small size jumps
η defines the decay rate of big jumps

.
Lévy-Khintchine formula
..

.

. ..

.

.

L(t, λ) = e−ϕ(λ)t

where ϕ(λ) =


γλ − CΓ(−Y )[(λ + η)Y − ηY ], Y ̸= 0

γλ + C ln(1 + λ/η), Y = 0
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Absolutely Continuous Time Changes

.
Absolutely Continuous Time Changes (A.C)
..

.

. ..

.

.

An A.C. Time change is the time integral of some positive function V (z)
of a Markov process {Zt , t ≥ 0},

Tt =
∫ t
0 V (Zu)du

We are interested in cases with Laplace Transform in closed form:

Lz(t, λ) = Ez

[
e−λ

R t
0 V (Zu)du

]

Example: The Cox-Ingersoll-Ross (CIR) process:

dVt = κ(θ − Vt)dt + σV

√
VtdWt

with V0 = v > 0, rate of mean reversion κ > 0, long-run level θ > 0,
and volatility σV > 0.
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Absolutely Continuous Time Changes

The Laplace Transform of the Integrated CIR process:

Lv (t, λ) = Ev

[
e−λ

R t
0 Vudu

]
= A(t, λ)e−B(t,λ)v

A =

 

2ϖe(ϖ+κ)t/2

(ϖ + κ)(eϖt − 1) + 2ϖ

!

2κθ

σ2
V

, B =
2λ(eϖt − 1)

(ϖ + κ)(eϖt − 1) + 2ϖ
, ϖ =

q

2σ2
V λ + κ2

This is the Zero Coupon Bond formula under the CIR interest rate
rt = λVt .

Rafael Mendoza (McCombs) Unified Credit-Equity Modeling Credit Risk 2009 30 / 1



Absolutely Continuous Time Changes

The Laplace Transform of the Integrated CIR process:

Lv (t, λ) = Ev

[
e−λ

R t
0 Vudu

]
= A(t, λ)e−B(t,λ)v

A =

 

2ϖe(ϖ+κ)t/2

(ϖ + κ)(eϖt − 1) + 2ϖ

!

2κθ

σ2
V

, B =
2λ(eϖt − 1)

(ϖ + κ)(eϖt − 1) + 2ϖ
, ϖ =

q

2σ2
V λ + κ2

This is the Zero Coupon Bond formula under the CIR interest rate
rt = λVt .

Rafael Mendoza (McCombs) Unified Credit-Equity Modeling Credit Risk 2009 30 / 1



Illustration of Absolutely Continuous Time Changes

.
CIR parameters κ = 7, θ = 2, V0 = 0.5 and σv =

√
2

..

.

. ..

.

.

P ro c e s s e s  X ( t)  v s  Y ( t)= X (T ( t))
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arriving and the amount trading (trading time)
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Composite Time Changes

.
Composite Time Changes
..

.

. ..

.

.

A Composite Time Change induces both jumps and stochastic volatility

Tt = T 1
T 2

t

T 1
t is a Lévy Subordinator

T 2
2 is and A.C time change

.
Laplace Transform of the Composite Time Change
..

.

. ..

.

.

It is obtained by first conditioning w.r.t. the A.C. time change

E[e−λTt ] = E[e−T 2
t ϕ(λ)] = Lz(t, ϕ(λ))
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A Composite Time Change induces both jumps and stochastic volatility

Tt = T 1
T 2

t

T 1
t is a Lévy Subordinator

T 2
2 is and A.C time change

.
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Quick Summary

We have:

1 A Jump-to-Default Extended Diffusion process:

E
[
f (Xt) 1{ζ>t}

]
= E

[
e−

R t
0

h(Xu)duf (Xt) 1{τ0>t}

]
2 A time-changed process Yt = XTt with the Laplace transform for the

time change Tt given in closed form,

E
[
e−λTt

]
= L (t, λ)

How do we evaluate contingent claims written on the time-changed
process Yt?

E
[
f (Yt) 1{ζ>Tt}

]
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Contingent Claims for the Time-Changed Process

.
Valuing contingent claims written on Yt = XTt..

.

. ..

.

.

E
[
1{ζ>Tt}f (Yt)

]
= E

[
Ex

[
1{ζ>Tt}f (XTt )

∣∣Tt

]]
Conditioning since Xt and Tt are independent

.
Conditional Expectation
..

.

. ..

.

.

E
[
1{ζ>Tt}f (XTt )

∣∣Tt

]
It is equivalent to pricing a contingent claim written on the process Xt

maturing at time Tt

We employ two methodologies to evaluate the expectations and do
the pricing in closed form:

1 Resolvent Operator: general methodology.
2 Spectral Representation: for square-integrable payoffs.
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Resolvent Operator

.
Resolvent Operator:
..

.

. ..

.

.

The Laplace Transform of the Expectation Operator:

(Rλf )(x) :=
∫∞
0 e−λtEx

[
1{ζ>t}f (Xt)

]
dt

We recover the Expectation via the Bromwich Laplace Inversion
formula:

.
Bromwich Laplace Inversion
..

.

. ..

.

.

Ex

[
1{ζ>t}f (Xt)

]
= 1

2πi

∫ ϵ+i∞
ϵ−i∞ eλ t(Rλf )(x)dλ

NOTE. The time t enters in this expression only through the
exponential eλ t
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Spectral Expansion .. Details

1 If the infinitesimal generator G of the diffusion process X is
self-adjoint

If X is a 1D diffusion process then G is self-adjoint in
H = L2 ((0,∞), m) with respect to the speed measure m(dx)

2 If f ∈ H
VThen we can use the Spectral Representation Theorem in order to
obtain the Expectation

.
Eigenfunction Expansion (when the spectrum of G is discrete):
..

.

. ..

.

.

Ex

[
1{ζ>t}f (Xt)

]
=
∑∞

n=1 e−λn tcnφn(x)

where cn = ⟨f , φ⟩ are the expansion coefficients and, λn are the
eigenvalues, φn(x) the eigenfunctions solving Gφn(x) = λnφn(x)

NOTE. The time t enters in this expression only through the
exponential e−λn t
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Valuing contingent claims written on Yt = XTt

.
Resolvent Opertator
..

.

. ..

.

.

E
[
1{ζ>Tt}f (Yt)

]

= E
[
Ex

[
1{ζ>Tt}f (XTt )

∣∣Tt

]]
= E

[∫ ϵ+i∞
ϵ−i∞ eλ Tt (Rλf )(x) dλ

2πi

]
=
∫ ϵ+i∞
ϵ−i∞ E

[
eλ Tt

]
(Rλf )(x) dλ

2πi

=
∫ ϵ+i∞
ϵ−i∞ L(t,−λ)(Rλf )(x) dλ

2πi

.
Spectral Expansion
..

.

. ..

.

.

E
[
1{ζ>Tt}f (Yt)

]

= E
[
Ex

[
1{ζ>Tt}f (XTt )

∣∣Tt

]]
= E

[∑∞
n=1 e−λn Ttcnφn(x)

]
=
∑∞

n=1 E
[
e−λn Tt

]
cnφn(x)

=
∑∞

n=1 L(t, λn)cnφn(x)
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A new class of Credit-Equity Models with
state-dependent jumps, S.V. and default intensity
.
Model Architecture for the Defaultable Stock
..

.

. ..

.

.

St = 1{t<τd}e
ρtXTt .

Xt V Jump-to-Default Extended Diffusion; e.g. JDCEV Process:

dXt = [µ + h(Xt)]Xt dt + σ(Xt)Xt dBt , X0 = x > 0,
σ(x) = axβ, h(x) = b + c σ2(x)

Tt V Random Clock: Lévy Subordinator, A.C. Time Change, or
Composite T.C.

ρ V Compensation Parameter (discounted martingale) .. Details

τd V Default Time

If ζ = min(τ0, ζ̃) is the lifetime of X , then
τd = inf{t ≥ 0 : ζ ≤ Tt}

At τd the stock drops to zero (Bankruptcy)
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τd V Default Time

If ζ = min(τ0, ζ̃) is the lifetime of X , then
τd = inf{t ≥ 0 : ζ ≤ Tt}

At τd the stock drops to zero (Bankruptcy)
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Survival Probability and Defaultable Zero Bonds

.
Survival Probability
..

.

. ..

.

.

Q(τd > t) = Q(ζ > Tt)

=
∑∞

n=0 L (t, (b + ωn))Γ(1+c/|β|)Γ(n+1/(2|β|))
Γ(ν+1)Γ(1/(2|β|))n!

×A
1

2|β| xe−Ax−2β

1F1(1 − n + c/|β|, ν + 1, Ax−2β)

.. Details

Where 1F1(a, b, z) is the Kummer Confluent Hypergeometric function;
and ω = 2|β|(µ + b), ν = 1+2c

2|β| , and A = µ+b
a2|β| .

.
Defaultable Zero Coupon Bond
..

.

. ..

.

.

BR(x , t) = e−rtQ(τd > t) + Re−rt [1 − Q(τd > t)]
Recovery fraction R ∈ [0, 1]
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Put Options

.
Put Option
..

.

. ..

.

.

P(x ; K , t) = PD(x ; K , t) + P0(x ; K , t),

where:

PD(x ; K , t) = Ke−rt [1 − Q(τd > t)], Default before t

P0(x ; K , t) = e−rtEx

[
(K − eρtXTt )

+1{τd>t}
]

No Default before t

= e−(r−ρ)t
∑∞

n=1 L(t, λn)cnφn(x)

The default claim PD(x ;K , t) is directly calculated from the Survival
Probability Q(τd > t) previously computed

The claim, P0(x ; K , t), is calculated by means of the Spectral
Expansion since f (x) = (K − x)+ ∈ L2 ((0,∞), m)
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Put Options
.
Put claim conditional on no default event before maturity
..

.

. ..

.

.

P0(x ; K , t) = e−(r−ρ)t
∞∑

n=1

L(t, λn)cnφn(x)

where k = K e−ρt and,
Eigenvalues V λn = ωn + 2c(µ + b) + b, with ω = 2|β|(µ + b)

Eigenfunctions V φn(x) = A
ν
2

√
(n−1)!(µ+b)(2c+1)

Γ(ν+n) xe−Ax−2β
L

(ν)
n−1(Ax−2β)

Expansion Coefficients V cn =
Aν/2+1k2c+1−2β

√
Γ(ν+n)

Γ(ν+1)
√

(µ+b)(2c+1)(n−1)!

×

{
|β|

c+|β| 2F2

(
1 − n, c

|β| + 1

ν + 1, c
|β| + 2

; Ak−2β

)
− Γ(ν+1)(n−1)!

Γ(ν+n+1) Lν+1
n−1

(
Ak−2β

)}
,

2F2: generalized hypergeometric function, L
(ν)
n : generalized Laguerre

polynomials.
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Numerical Examples

Assume a background process {Xt , t > 0} following a JDCEV, and a
composite time change Inverse Gaussian Process & CIR:

.
Parameters
..

.

. ..

.

.

JDCEV

S 50

CIR

V 1
a 10 θ 1
β −1 σV 1
c 0.5 κ 4
b 0.01

IG
γ 0

r 0.05 η 8

q 0 C 2
√

2/π

Note that γ = 0, thus the time changed process is a pure jump
process!
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Infinitesimal Generator of the Time Changed
Process (Yt = XTt

, Vt)

Gf (x , v) =

γv

(
1

2
a2x2β+2 ∂2f

∂x2
(x , v) + (b + ca2x2β)x

∂f

∂x
(x , v) − (b + c2a2x2β)f (x , v)

)
︸ ︷︷ ︸

Gx f (x ,v) JDCEV’s infinitesimal generator

+v

(∫
(0,∞)

(f (y , v) − f (x , v))π(x , y)dy − k (x) f (x , v)

)
︸ ︷︷ ︸

R

0,∞(Ps f −f )ν(ds) Subordination component

+
σ2

V

2
v

∂2f

∂v2
(x , v) + κ(θ − v)

∂f

∂v
(x , v)︸ ︷︷ ︸

Gv f (x ,v) CIR’s infinitesimal generator

State dependent jump measure π(x , y) =
∫
(0,∞) p(s; x , y)ν(ds)

Additional killing rate k(x) =
∫
(0,∞) Ps(x , {0})ν(ds) .. Details
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Numerical Examples (Cont.)
.
Implied Volatility
..

.

. ..

.

.

Implied Volatility 

13%

25%

37%

49%

61%

30 35 40 45 50 55 60 65
Strike

Im
pl

ie
d 

V
ol

at
ilit

y

1/4

1/2

1

2

3

ATM
Volatility

Time/Strike 30 35 40 45 50 55 60 65

1/4 62.04 47.94 35.52 26.19 21.41 20.09 20.28 20.88
1/2 51.94 41.47 32.72 26.39 22.64 20.72 19.84 19.46
1 45.74 38.24 32.14 27.53 24.30 22.12 20.65 19.64
2 43.03 37.68 33.23 29.61 26.72 24.45 22.66 21.25
3 42.80 38.34 34.55 31.34 28.64 26.39 24.52 22.96

Implied volatility smile/skew curves as functions of the strike price.
Current stock price level is 50, ATM volatility σ = aSβ = 20%Rafael Mendoza (McCombs) Unified Credit-Equity Modeling Credit Risk 2009 44 / 1



Numerical Examples (Cont.)

.
Credit Spreads and Default Probability
..

.

. ..

.

.

Credit Spreads

1.5%

2.5%

3.5%

4.5%

5.5%

6.5%

7.5%

8.5%

0 5 10 15 20 25 30 35 40 45 50
Time to maturity (years)

C
re

d
it
 s

p
re

a
d
s

30

40

50

60

70

Default Probability

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

0 5 10 15 20 25 30 35 40 45 50
Time to maturity (years)

P
ro

b
a
b
ili
ty

 o
f 
d
e
fa

u
lt

30

40

50

60

70

Credit spreads and default probabilities as functions of time to maturity for
current stock price levels S = 30, 40, 50, 60, 70.
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Summary of Features and Practical Benefits of Our
Modeling Framework

Our Stock price is a jump-diffusion process with stochastic volatility
and default intensity,

The Default intensity explicitly depends on the stock price and
volatility

The leverage effect is introduced in the diffusion and in jumps
components - as the stock falls, the diffusion volatility and arrival
rates of large jumps increase
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Summary of Features and Practical Benefits of Our
Modeling Framework (cont.)

Stochastic volatility affects the diffusion and jump components

Unified credit-equity framework V consistency in the pricing and
hedging of credit and equity derivatives

We obtain analytical solutions V faster computation of prices and
Greeks, and faster calibration

.. Finish
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Questions?

Thank you!
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Appendix



Lévy Subordinators

.
Lévy subordinator
..

.

. ..

.

.

Non-decreasing Lévy process {Tt , t ≥ 0} with positive jumps and
non-negative drift

Laplace Transform (LT):
L (t, λ) = E[e−λTt ] = e−tϕ(λ)

The Laplace exponent ϕ (λ) is given by the Lévy-Khintchine formula:

ϕ (λ) = γλ +
∫
(0,∞)

(
1 − e−λs

)
ν (ds)

γ ≥ 0 V positive drift

ν (ds) V Lévy measure which satisfies
∫

(0,∞)
(s ∧ 1) ν (ds) < ∞

transition probability πt (ds) is obtained by:∫
[0,∞) e−λsπ (ds) = e−tϕ(λ)
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ν (ds) V Lévy measure which satisfies
∫

(0,∞)
(s ∧ 1) ν (ds) < ∞

transition probability πt (ds) is obtained by:∫
[0,∞) e−λsπ (ds) = e−tϕ(λ)
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ϕ (λ) = γλ +
∫
(0,∞)

(
1 − e−λs

)
ν (ds)

γ ≥ 0 V positive drift
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Examples of Lévy Subordinators (cont.)

The processes Tt is a Compound Poisson processes with gamma
distributed jump sizes if Y < 0

Compound Poisson process with exponential jumps (Y = −1)

ν(ds) = αηe−ηsds, ϕ(λ) = γλ +
αλ

λ + η

Tempered Stable Subordinators (Y ∈ (0, 1))

Inverse Gaussian process (Y = 1/2)
Gamma process (Y → 0)

The processes with Y ∈ [0, 1) are of infinite activity.

.. Go Back
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Martingale Property

Intensity h(S) has to be added in the drift of X to compensate for
jump to zero, and ρ and µ are parameters to be selected to make the
discounted time-changed process into a martingale:

E[St2 |Ft1 ] = e(r−q)(t2−t1)St1 , t1 ≤ t2,

where r and q are the risk-free rate and dividend yield.

If Tt is a subordinator, then µ can be arbitrary and,

ρ = r − q + ϕ(−µ).

If Tt is an A.C. time change, then

µ = 0, ρ = r − q.

.. Go Back
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Survival Probability

1 Condition w.r.t the Random Clock Tt

Q(τd > t) = Q(ζ > Tt) = E
[
E
[
e−

R u
0 λ(Sv )dv1{T0>u}

∣∣∣Tt = u
]]

2 Since the Function f (x) = 1 is NOT in L2 (D, m), we use the
resolvent operator Rλ

Q(ζ > Tt) =
1

2πi

∫ ε+i∞

ε−i∞
L(t,−λ)(Rλ1)(x)dλ,

3 The resolvent is available in closed form

Rλf (x) =

∫ ∞

0
Gλ(x , y)f (y)dy

Gλ(x , y) is the Resolvent Kernel or Green’s Function

.. Go Back



Survival Probability

4 Gλ(x , y) is known in closed form (µ + b > 0):

Gλ(x , y) =
Γ(ν/2 + 1/2 − k(λ))

(µ + b)Γ(1 + ν)y

(
x

y

)c+1/2−β

eA(y−2β−x−2β)

×Mk(λ), ν
2
(A(x ∧ y)−2β)Wk(λ), ν

2
(A(x ∨ y)−2β)

where ν = 1+2c
2|β| , k(λ) = ν−1

2 − λ
2|β|(µ+b) , A = µ+b

a2|β| and,

Mk,m(z) and Wk,m(z) are the first and second Whittaker functions.

5 Using the Cauchy Residue Theorem to invert the Resolvent we obtain
the Survival Probability

.. Go Back
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Spectral Expansion

Assume ∃m on D with full support (i.e. SSup(m) = D) s.t. the
(bounded) contraction semigroup Pt (e.g. Pt f (x) = Ex [f (Xt)1{ζ>t}])

are symmetric on H = L2(D, m)

⟨Pt f , g⟩m =
∫
D Pt f g dm =

∫
D f Ptg dm = ⟨f ,Ptg⟩m

Then the infinitesimal generator G is (generally unbounded)
self-adjoint operator in H, i.e., G is symmetric,

⟨Gf , g⟩m = ⟨f ,Gg⟩m, ∀f , g ∈ Dom(G)

The domains of G and its adjoint G∗ coincide in H, i.e.
Dom(G) = Dom(G∗) ⊂ H
The infinitesimal operator G is non-positive in H, i.e. ⟨Gf , f ⟩m < 0
for all f ∈ Dom(G).

.. Go Back



Spectral Representation Theorem
.
Spectral Representation Theorem
..

.

. ..

.

.

Let H be a separable real Hilbert space and let {Pt , t ≥ 0} be a strongly
continuous self-adjoint contraction semigroup in H with the non-positive
self-adjoint infinitesimal generator G. Then there exists a unique integral
representation of {Pt , t ≥ 0} of the form

Pt f = etGf =
∫
[0,∞)

e−λtE (dλ)f , f ∈ H, t ≥ 0,

where E is the spectral measure of the negative −G of the infinitesimal generator
G of P with the support of the spectral measure (the spectrum of −G)
Supp(E ) ⊂ [0,∞), namely,

−Gf =
∫
[0,∞)

λE (dλ)f , f ∈ Dom(G),

Dom(G) =
{

f ∈ H :
∫
[0,∞)

λ2(E (dλ)f , f ) < ∞
}

.

Hille and Phillips (1957, Theorem 22.3.1) and Reed and Simon (1980,
Theorem VIII.6)

.. Go Back



Discrete Case Spectral Representation

Things simplify further when the generator has a purely discrete spectrum.
Let −G be a self-adjoint non-negative operator with purely discrete
spectrum σd(−G) ⊂ [0,∞). Then the spectral measure can be defined by

E (B) =
∑

λ∈B P(λ),

where P(λ) is the orthogonal projection onto the eigenspace corresponding
to the eigenvalue λ ∈ σd(−G). Then the spectral theorem for the
self-adjoint semigroup takes the simpler form:

Pt f = etGf =
∑

λ∈σd (−G) e−λtP(λ)f , t ≥ 0, f ∈ H,

−Gf =
∑

λ∈σd (−G) λP(λ)f , f ∈ Dom(G).

(e.g. P(λ)f = c(λ)ϕλ = ⟨f , ϕλ⟩mϕλ)
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Notes on Calibration and the Implied Measure
(Cont & Tankov, 2004)

Exponential Lévy and jump-diffusion models correspond to incomplete
market models

V No perfect hedges can be found
V The (equivalent) martingale measure cannot be defined in a unique
way

Any arbitrage-free market prices of securities can be represented as
discounted conditional expectations w.r.t. a risk-neutral measure Q
under which discounted asset prices are martingales

V Model Calibration. Find a risk-neutral model Q which matches the
prices of the observed market prices V{i∈I}(S) of securities i ∈ I at
time t = 0,

∀i ∈ I , Vi (S) = e−rti EQ[f (Sti )]

.. Go Back



Notes on Calibration and the Implied Measure
(Cont & Tankov, 2004)

Least Square Calibration.

θ∗ = arg minQθ∈Q
∑

i∈I ωi

∣∣V θ
i (S , ti ) − Vi (S)

∣∣2
where Q is the set of martingale measures

V The objective functional is non-convex.
V Since the number of observable prices is finite there are multiple
Lévy measures giving the same error level (multiple local minimum)

To obtain a unique solution in a stable manner we need to introduce
a penalty functional (regularization) F

θ∗ = arg minQθ∈Q
∑

i∈I ωi

∣∣V θ
i (S , ti ) − Vi (S)

∣∣2 + αF (Qθ|P0)

where P0 is the historical measure at t = 0 and F is a convex
function which penalizes the objective if Q deviates much from P0

and ensures uniqueness (v.g. F relative entropy)
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Jump measure and killing rate

(Jump measure) π (x , y) = 2|β|AC
( y

x

)c− 1
2 y−(2β+1)

×
∫
(0,∞)

s−3/2e(ων
2 −ξ−η)s

eωs−1 exp
{
−A

(
x−2βeωs+y−2β

eωs−1

)}
Iν
(

A(xy)−β

sinh(ωs/2)

)
ds.

and

(killing rate) k (x) =

C
∫
(0,∞)

1 −
Γ
“

c
|β|+1

”

(τ(s))
1

2|β| e−τ(s)−bs
1F1

0

@

c
|β| + 1

ν + 1
;τ(s)

1

A

Γ(ν+1)

 s−3/2e−ηsds

where τ(s) := ω x−2β

2|β|2a2(1−e−ω s)
,
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Protection Payment under JDCEV

PV(Protection Payment) = (1 − r) E
h

e−r· T∆
L 1{T∆

L
≤T}

i

= (1 − r)

8

>

>

>

<

>

>

>

:

E
»

e−r· TL−
R TL
0 h(Xu)du1{TL≤T}

–

| {z }

Diffusion Term

+
R T
0 e−r· u E

h

e−
R u
0 h(Xv )dvh (Xu) 1{TL> u}

i

du
| {z }

Jump Term

9

>

>

>

=

>

>

>

;

Recall that the first hitting time to L is given by TL = inf {t : Xt = L},
and that the first jump time to ∆ is given by

ζ = inf
{

t ∈ [0,∞] :
∫ t

0
h (Xu) du ≥ e

}
The default intensity is the power function:

h(Xt) = b + ca2X 2β
t

Notice. Since e is an exponentially distributed r.v. with unit mean, then

P[ζ > t] = e−
R t

0
h(Xu)du and P[ζ < t] =

∫ t

0
h (Xv ) e−

R v
0

h(Xu)dudv
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Premium Payment under JDCEV

PV(Premium Payment) = ϱ · ∆t ·
∑N

i=1 e−r · ti E
[
1{T∆

L ≥ ti}

]
= ϱ · ∆t ·

∑N
i=1 e−r · ti E

[
e−

R ti
0 h(Xu)du1{TL≥ ti}

]
︸ ︷︷ ︸

NO jump to default & NO hitting level

The premium is paid at times ti conditional on No default and that the stock
price did Not drop to level L by time ti

The default intensity is the power function:

h(Xt) = b + ca2X 2β
t
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Accrued Interests under JDCEV

PV(Acc. Interest) = ϱ · E
[
e−r ·T∆

L

(
T∆

L − ∆t ·
[

T∆
L

∆t

])
1{T∆

L ≤T}

]
= ϱ

∑N−1
i=0 E

[
e−r ·T∆

L

(
T∆

L − ∆t · i
)
1{T∆

L ∈ (ti ,ti+1)}

]
Expressed in terms of Diffusion and Jump components:

= ϱ ·

8

>

>

>

<

>

>

>

:

R T
0 u e−r· u E

h

e−
R u
0 h(Xv )dvh (Xu) 1{TL≥ u}

i

| {z }

Jump Term

du

+ E
»

e−r·TL−
R TL
0 h(Xu)duTL1{TL≤T}

–

| {z }

Diffusion Term

−
PN−1

i=1 (i · ∆t)
R ti+1
ti

e−r· u E
h

e−
R u
0 h(Xv )dvh (Xu) 1{TL≥ u}

i

| {z }

Jump Term

du

−
PN−1

i=1 (i · ∆t)

0

B

B

B

@

E
»

e−r· TL−
R TL
0 h(Xu)du1{TL≤ ti+1}

–

| {z }

Diffusion Term

−E
»

e−r· TL−
R TL
0 h(Xu)du1{TL≤ ti}

–

| {z }

Diffusion Term

1

C

C

C

A

9

>

>

>

=

>

>

>

;

.. Go Back
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Expectations to Solve: Jump Term and Diffusion Term

Jump Term.

E
[
e−

R u
0

h(Xv )dvh (Xu) 1{TL> u}

]
Since the default intensity is given by a power function,
h(Xt) = b + ca2X 2β

t , we can solve, more generally, for a given p the
expectation which we name truncated p-Moment

E
[
e−

R u
0

h(Xv )dv (Xu)
p 1{TL> u}

]
Diffusion Term.1 This term can be seen as the Expected Discount (given no
default) up to the first hitting time to level L

E
[
e−r ·TL−

R TL
0 h(Xu)du1{TL≤T}

]
.. Go Back
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Solving the Expectations: the truncated p-Moment
The truncated p-Moment for L > 0 and µ + b > 0 is given by

Ex

h

e−
R t
0 h(Xu)du1{TL>t}(Xt)p

i

=
P∞

n=0

0

@

A
1−2c−2p

4|β| − 1
2

“

1−p
2|β|

”

n
Γ

“

1+ 2c+p
2|β|

”

n! Γ(1+ν)
x

1
2
−c+βe−

A
2

x−2β
e(p(µ+b)−(b+ω n))t

×

2

6

4

M ν−1
2

+n−
“

2c+p
2|β|

”

, ν
2

`

Ax−2β
´

−
M

ν−1
2

+n−
„

2c+p
2|β|

«

, ν
2

“

A L−2β
”

W
ν−1

2
+n−

„

2c+p
2|β|

«

, ν
2

(A L−2β)
W ν−1

2
+n−

“

2c+p
2|β|

”

, ν
2

`

Ax−2β
´

3

7

5

1

C

A

+
P∞

n=1

0

B

@

e
−

“

ω
“

κn− ν−1
2

”

+ξ
”

t
x

1
2
−c+βe−

A
2

x−2β Mκn, ν
2

“

A L−2β
”

Wκn, ν
2

“

Ax−2β
”

Γ(1+ν)

»

d
dκ

Wκ, ν
2
(A L−2β)

–

˛

˛

˛

˛

κ=κn

×
"

A
1−2c−2p

4|β| − 1
2

Γ
“

1− 1−p
2|β|

”

Γ
“

1+ 2c+p
2|β|

”

Γ
“

ν−1
2

−κn− 2c+p
2|β|

”

Γ
“

1−ν
2

−κn

”

− 2|β|A
1−ν

2 L−2β−1+pΓ(ν)
(2|β|−1+p) 2F2

 

1 − 1−p
2|β| ,

1−ν
2

− κn

2 − 1−p
2|β| , 1 − ν

; AL−2β

!

− 2|β|A
1+ν

2 L2c+p−2βΓ(−ν)Γ( 1+ν
2

−κn)
(2|β|+2c+p)Γ

“

1−ν
2

−κn

” 2F2

 

1 + 2c+p
2|β| , 1+ν

2
− κn

2 + 2c+p
2|β| , 1 + ν

;A L−2β

!#!

where κn =
n

κ|Wκ, ν
2

`

AL−2β
´

= 0
o

Rafael Mendoza (McCombs) Unified Credit-Equity Modeling Credit Risk 2009 44 / 1



Solving the Expectations: the truncated p-Moment

The truncated p-Moment for L = 0 (CDS case) and µ + b > 0 is given by

Ex

[
e−

R t
0

h(Xu)du1{TL>t}(Xt)
p
]

=
∑∞

n=0

A
1−2c−2p

4|β| − 1
2 ( 1−p

2|β| )n
Γ(1+ 2c+p

2|β| )
n! Γ(1+ν) x

1
2−c+βe−

A
2 x−2β

e(p(µ+b)−(b+ω n))t

×M ν−1
2 +n−( 2c+p

2|β| ), ν
2

(
Ax−2β

)
where κn =

{
κ|Wκ, ν

2

(
AL−2β

)
= 0
}
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Solving the Expectations: Diffusion Term

The Diffusion Term

Ex

[
e−r ·TL−

R TL
0 h(Xu)du1{TL≤T}

]
=
(

x
L

) 1
2−c+β

eϵ A
2 (x

−2β−L−2β)×[
W

ϵ 1−ν
2

− r+ξ
ω

, ν
2
(Ax−2β)

W
ϵ 1−ν

2
− r+ξ

ω
, ν

2
(AL−2β)

+
∑∞

n=1
ω e

−(ω(κn−ϵ 1−ν
2 )+r+ξ)T

(ω(κn−ϵ 1−ν
2 )+r+ξ)

Wκn, ν
2
(Ax−2β)

h

∂
∂κ Wκ, ν

2
(AL−2β)

i

˛

˛

˛

κ=κn

]

Rafael Mendoza (McCombs) Unified Credit-Equity Modeling Credit Risk 2009 46 / 1



Numerical Example 1: the effect of the sensitivity to
variance “c”
Default Intensity function: h(Xt) = b + ca2X 2β

t . We choose a = σ/Sβ
0 = 10
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Numerical Example 2: the effect of volatility “σ”
Default Intensity function: h(Xt) = b + ca2X 2β

t . We choose a = σ/Sβ
0 = 20
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