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Disclaimer

This document is NOT a research report under U.S. law and is NOT a
product of a fixed income research department. Opinions expressed here do
not necessarily represent opinions or practices of Bank of America N.A. The
analyses and materials contained herein are being provided to you without
regard to your particular circumstances, and any decision to purchase or sell
a security is made by you independently without reliance on us. This material
1s provided for information purposes only and is not an offer or a solicitation
for the purchase or sale of any financial instrument. Although this
information has been obtained from and is based on sources believed to be
reliable, we do not guarantee its accuracy. Neither Bank of America N.A.,
Banc Of America Securities LLC nor any officer or employee of Bank of
America Corporation affiliate thereof accepts any liability whatsoever for
any direct, indirect or consequential damages or losses arising from any use
of this report or its contents.
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> Collateralized exposure and the margin period of risk

> Semi-analytical method for calculating collateralized EE



Margin agreements as a means of reducing
counterparty credit exposure



Introduction

> Counterparty credit risk is the risk that a counterparty in an
OTC derivative transaction will default prior to the expiration of
the contract and will be unable to make all contractual payments.

— Exchange-traded derivatives bear no counterparty risk.

> The primary feature that distinguishes counterparty risk from
lending risk 1s the uncertainty of the exposure at any future date.

— Loan: exposure at any future date 1s the outstanding balance,
which 1s certain (not taking into account prepayments).

— Derivative: exposure at any future date is the replacement cost, which is
determined by the market value at that date and 1s, therefore, uncertain.

> Counterparty risk is bilateral because
— derivative values can be both positive and negative

— both counterparties can default



Exposure at Contract Level

Assume that no netting or margin agreement 1s in place.

Market value of contract i with a counterparty 1s known only
for current datef =0 . For any future date ¢, this value V,(¢) 1is
uncertain and should be assumed random.

If a counterparty defaults at time T prior to contract maturity,
economic loss 1s equal to the replacement cost of the contract

— If Vi(t)>0 | we do not receive anything from defaulting counterparty,
but have to pay V.(t) to another counterparty to replace the contract.

— If Vi(t) <0 wereceive | V,(t)| from another counterparty, but have to
forward this amount to the defaulting counterparty.

Combining these two scenarios, we can specity
contract-level exposure E () at time r according to

E (1) =max{V.(1),0}



Uncertainty of Future Exposure

> Future value and exposure are uncertain!
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Exposure at Counterparty Level

> Counterparty-level exposure at future time 7 can be defined as
the loss experienced by the bank if the counterparty defaults
at time ¢ under the assumption of no recovery

> If counterparty risk is not mitigated in any way, counterparty-
level exposure equals the sum of contract-level exposures

E®)= E@) = max{V(),0
> If there are netting agreements, derivatives with positive value
at the time of default offset the ones with negative value within
each netting set NS, , so that counterparty-level exposure is

E(t)= E\ ()= max Vi(t), 0

k k i NS,

— Each non-nettable trade represents a netting set
| 8



Margin Agreements

> Margin agreements allow for further reduction of
counterparty-level exposure.

> Margin agreement is a legally binding contract between two
counterparties that requires one or both counterparties to post
collateral under certain conditions:

— A threshold 1s defined for one (unilateral agreement) or both (bilateral
agreement) counterparties.

— If the difference between the net portfolio value and already posted
collateral exceeds the threshold, the counterparty must provide collateral
sufficient to cover this excess (subject to minimum transfer amount).

> The threshold value depends primarily on the credit quality of
the counterparty.



Exposure with Margin Agreements

> Assuming that some netting sets may be covered by margin
agreements, we can write bank’s exposure to the counterparty:

E ()= max Vi()- C(2),0

k i NS,
where C,(¢) is the market value of collateral available to the
bank for netting set k at time 7.

— If NS, is not covered by a margin agreement, then C,(z) 0O

> We assume the following sign convention:

_ G (®)>0: at time ¢ the bank holds collateral in the amount IC, (D)

_ G@®<0 : at time ¢ the bank has posted collateral in the amount IC, (7)l
C.(1)=0

— : at time ¢ the bank neither holds nor has posted collateral
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Collateralized exposure and
the margin period of risk

| 11



Unilateral Margin Agreement

To simplify the notations, we will consider a single netting set:
E.(t) =max{ V(r)- C(), 0}

where V(¥) 1s the portfolio value for the netting set at time ¢ :

V)= V()
Let’s consider a unilateral margin agreement (in bank’s favor)
with threshold H_, 0 and minimum transfer amount MTA.

It 1s difficult to model collateral subject to MTA exactly
because that would require daily simulation time points.

In practice, the actual threshold H_, 1s often replaced with the
effective threshold He ot defined as

H ;gi =H_, +MTA
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Naive Approach

(e)

Collateral covers excess of portfolio value V(r) over threshold H

C(t)=max{ V(t)- H,0)

cpt ?

Therefore, collateralized exposure is
0 if Vi) 0

E.(1) =max{ V(i)- C(r), O} = V@) if 0<V(@) H®

cpt

H® if  V(@)>H®

cpt cpt

Thus, any scenario of collateralized exposure 1s limited by the
threshold from above and by zero from below.

The problem with this approach is that 1t implicitly assumes that
— collateral 1s delivered immediately

— procedures of settling and replacing of trades start immediately
when the required collateral 1s not posted



Margin Period of Risk

> Even with daily margin call frequency, there is a significant
delay Ot , known as the margin period of risk (MPR), between
a margin call that the counterparty does not respond to and the
start of the default procedures.

— Margin calls can be disputed, and it may take several days for the bank
to realize that the counterparty i1s defaulting rather than disputing the call

— There 1s a grace period after the bank issues a notice of default.
During this grace period the counterparty may still post collateral

> Thus, collateral available at time ¢ is determined by
portfolio value at time ¢t Of .

> While Ot is not known with certainty, it is usually assumed
to be a fixed number.
— Assumed value of Ot depends on margin call frequency and trade liquidity

— Typical assumption for daily calls and liquid trades is o =2 weeks
| 14



Including MPR in the Model

Suppose that at time ¢ — 9t we have collateral C(z —or) and
portfolio value is V(¢ —Or)

Then, the amount AC(¥) that should be posted by time ¢ i1s
DC(r) = max{ V(¢ - dt)- C(¢- dr)- H,- C(t- dr)

cpt ?

— Negative AC(f) means that the bank will return collateral

Collateral C(¢) available at time ¢ 1s
C(t)=C(t- dr)+DC(t) =max{ V(t- dr)- H,0)

cpt ’

For comparison collateral under the “naive” model is
(1) =max{ V(t)- H®,0|

nalve cpt ?

Thus, to determine collateralized exposure at time ¢,
we need to simulate portfolio value both at ¢t —ot and at 7 .



Full Monte Carlo Method

» Simulating exposure for collateralized counterparty
— Collateralized exposure can go above the threshold due to MPR

. [N —
Portfolio —R L V(@)
Value \ — — "
\ ““““““ A
L (i)
(e) Y i Y
HCPt """" T TT TS N
' i s
i Ec(t)
tk—l ZLk
ot ot

| 16



Bilateral Margin Agreement

Under a bilateral margin agreement, both the counterparty and
the bank have to post collateral.

Two thresholds are defined: H,, 0 and H_, O
— H,, 1s negative because we value trades from the bank’s perspective
— Bank posts collateral when portfolio value falls below H,

— Recall that we treat collateral posted by bank as a negative amount

Two effective thresholds are specified:
HY) =H_, +MTA H® =H_ - MTA

After effective thresholds are defined, the bilateral margin
agreement 1s treated as if it had zero MTA.



Collateral and Exposure for Bilateral MA

> Collateral available to bank at time 7 is given by
C(t)=max|{ V(t- dr)- H®,0 +min{ V(- dr)- HE,,0)

cpt?

v

The two terms above describe two types of future scenarios:

— First term: the bank receives collateral C(z) >0

— Second term: the bank posts collateral C(#) <0

v

Note that both terms cannot be non-zero simultaneously!

> Bank’s exposure to counterparty is still given by
E.(t) =max{ V(r)- C(), 0}

v

If the counterparty defaults when the bank has posted collateral,
1s there any credit exposure for the bank?
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Exposure from Posting Collateral

> When the bank posts collateral, it can experience loss if the
portfolio value increases by more than | H{¢) | over the MPR J¢

V(t)

H (e)

bnk

no exposure

E () =max{V(r)- C(1), 0}
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Semi-analytical method
for collateralized EE
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Portfolio Value at Primary Time Points

Let us assume that we have run simulation only for primary
time points ¢ and obtained portfolio value distribution in the
form of M quantities V'(¢) , where j (from 1 to M) designates
different scenarios

From the set {V(¥)} we can estimate the unconditional
expectation () and standard deviation g(¥) of the portfolio
value, as well as any other distributional parameter

Can we estimate collateralized EE profile without simulating
portfolio value at the look-back time points {V/(t - dt)} 2



Collateralized EE Conditional on Scenario

> Collateralized EE can be represented as
EE_.(t) =E[EEY’(1)]

where EEY(¢) is the collateralized EE conditional on V'/(¢)

EEY (1) =E max{V."(1),0}| V" (r)

where V."(¢) is the collateralized portfolio value defined as
Vc(j)(t) — V(j)(t) _ C(j)(t)

> If we can calculate EEZ’(?) analytically, the unconditional
collateralized EE can be obtained as the simple average of
EE(t) over all scenarios j :

M .
EE,.() = ﬁ EEY(7)

J=1
| 22
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If Portfolio Value Were Normal...

Let us assume that portfolio value V(¢) at time ¢ 1s normally
distributed with expectation () and standard deviation o(z).

Then, we can construct Brownian bridge from V (0) to V()

Conditionally on V(¢) , VY(¢- dt) has normal distribution
with expectation

a9 (t) = %V(O) + #V(“(t)

and standard deviation

b(r)=s (1 \/ L

Conditional collateralized EE can be obtained in closed form
by integrating over a single normal variable!




Illustration: Brownian Bridge

> Brownian bridge from V(0) to V(¢)
a (j)(l‘)

o 224 5 V)
HOl _ o ae )V T "

cpt
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-
-
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-
-
-

conditional
distribution

0 I=or 1

> Conditionally on V”(¢) , the distribution of V”(z- dt) is
normal with mean a’(¢) and standard deviation b(¢)
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Arbitrary Portfolio Value Distribution

We will keep the assumption that, conditionally on V/(z) ,
the distribution of V'/(¢- dt) is normal, but will replace o(f)
with a local quantity g, (¢)

Let us describe portfolio value V(¢) at time ¢ as
V() =v(t,2)

where V(£,Z) is a monotonically increasing function of
a standard normal random variable Z.

Let us also define a normal equivalent portfolio value as
W)y=wt,Z)=mt)+s (t)Z

To obtain g, (7) , we will scale g(¢) by the ratio of

probability densities of W(¢) and V()



Scaled Standard Deviation

> Let us denote probability density of quantity X via f, () and
scale the standard deviation according to

Jwa W Z)]
s. . (t,Z t
2)= vV, Z)] 50
> Changing variables from W(¢) and V(¢) to Z, we have
_ f@ f(2)
fv(t)[V(f,Z)]— V(I,Z)/ 7 fW(t)[ (t Z)] (t)

> Substitution to the definition of g, (z,Z) above gives

_ v(t,2)
loc(lL Z) Z
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Estimating CDF

> Value of Z" corresponding to V/’(t) can be obtained from

70 — F _1(FV(I)[VU)(I)])

> Let us sort the array VY(#) in the increasing order so that
V[j(k)] (t) — ‘/sf)]frt)ed(t)
where j (k) 1s the sorting index

> From the sorted array we can build a piece-wise constant CDF
that jumps by 1/M as V() crosses any of the simulated values:

Tk-1 1k _2-1
2 M 2M 2M

FV(t) [V[j(k)](t)]
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Estimating Derivative

> Now we can obtain Z'’ corresponding to V'/)(¢) as

AL N =g 2k -1
2M

» Local standard deviation S ,”)(¢) can be estimated as :
V[j(k+Dk)](I) _ V[j(k- Dk)](t)

[j(k)] [j(k)]
S (1) S,..(Z77) ZLiDOT _ 71k Do)

loc

» Offset k should not be too small (too much noise) or too large
(loss of “locality”). This range seems to work very well:

20 Dk 0.05M
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Back to the Bridge

> We assume that, conditionally on V() , V(¢- dt) has
normal distribution with expectation

a“)(r)%vm) t t‘”v“)()

and standard deviation

bO(1) =S5 (j)(t)\/dt (t; dr)

loc

> Collateralized exposure depends on dV" )(t) =V - V(- dr)
which 1s also normal conditionally on VY(#) with the same
standard deviation b"/(¢) and expectation da ”’(¢) given by

da (j)(l‘) =V(j)(l) - a (j)(t) =% V(j)(l) - V(O)
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Unilateral MA: Conditional Exposure

> Collateral available at time ¢ conditional on scenario j is
C(1) = max{ V(¢ - dr)- H,0)

cpt ?

> Conditional collateralized portfolio value at time ¢ is
VOt =V (1) - CO(r) = min{ VO®r), HO +dV(j)(t)}

cpt

> Conditional collateralized exposure at time 7 is

E(t) = max min{ v, H® +dV(j)(t)} ,0

cpt

=1 minl VO, [HS +dV(j)(t)]+}

{V(j)(l‘)>0} cpt
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Unilateral MA: Conditional EE

> Evaluating the conditional expectation, we obtain:

EEY)(¢) =1] H® +da” () F (d<2)) = (d(”

V(j)(t)>0] { cpt cpt cpt

+b(r) f(d2)- F(d2) +vOeF (d2)]

cpt cpt

where F () and f () are the CDF and the density of
the standard normal distribution, respectively.

> Quantities d\” and d'* (where a can be either cpt or bnk)
are defined according to

H? +da’t)- v(r) g H? +da" ()

d® = | .
a b(J)(t) a b(])(l‘)

| 31



Bilateral MA: Conditional Exposure

> Collateral available at time ¢ conditional on scenario j is
C(1) = max{ V(¢ - dr)- H,0} + min{ V(- dr)- HE,,0)

cpt?

> Conditional collateralized portfolio value at time ¢ is

HS +dvi(r) if dvV(t)<v(t)- HY)
V(= V) if VP@)-HS avie) V®)- Hyy
HE +dvi(@) it dvP@)>VY(t)- HE,

> Conditional collateralized exposure at time 7 is

EJ ()= max{ Vc(j)(t),O}



Bilateral MA: Conditional EE

> Evaluating the conditional expectation, we obtain:

EEY (1) = 1{ EEY (1) + 1[ EEY (1)

v()>0) v 0

where EEY"(+) and EEY'(¢) are given by

EEV ()= HY+da"() F(d2)- F(d®)

cpt cpt cpt

+b@) Fd2)-FdD) +vO@) F(dV)- F(d®

cpt cpt cpt

+ HE+da () F(d0)+b90f (d)
and

EEV (1) = HE+da'(r) F(d2)+bP0)f (d2)

bnk
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Example 1: 5-Year IR Swap Starting in 5 Years

» Uncollateralized EE and the two thresholds we will consider
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—#— EE (no collateral) = Threshold 0.5% — Threshold 2.0%
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Forward Starting Swap and Small Threshold

> Collateralized EE when threshold is 0.5 %
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Forward S

tarting Swap and Large Threshold

» Collateralized EE when threshold is 2.0%
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——MPR = 0 —®— Full MC (ul) —&— S-A (ul) —*— Full MC (bl) —%—S-A (bl)
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Example 2: 5-Year IR Swap Starting Now

» Uncollateralized EE and the two thresholds we will consider

—#— EE (no collateral) = Threshold 0.5% — Threshold 2.0%
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Swap Starting Now and Small Threshold

> Collateralized EE when threshold is 0.5 %
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——MPR = 0 —®— Full MC (ul) —&— S-A (ul) —*— Full MC (bl) —%—S-A (bl)

—

Expected Exposure [ % of notiona

0.45%

0.40%

©
w
g
™

o
—
2
o~

0.10%

0.05%

0.00% *
0.0

2.0 3.0 4.0 5.0
Time [years ]




Swap Starting Now and Large Threshold

» Collateralized EE when threshold is 2.0%
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——MPR = 0 —®— Full MC (ul) —&— S-A (ul) —*— Full MC (bl) —%—S-A (bl)
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Conclusion

Margin agreements are important risk mitigation tools
that need to be modeled accurately

Collateral available at a primary time point depends on the
portfolio value at the corresponding look-back time point

Full Monte Carlo 1s the most flexible approach, but it requires
simulating trade values at both primary and look-back time points

— Simulation time is doubled in comparison to non-margined counterparties

We have developed a semi-analytical method of calculating
collateralized EE that avoids doubling the simulation time

— Portfolio value is simulated only at primary time points

— For each portfolio value scenario at a primary time point, conditional
collateralized EE is calculated in closed form

— Unconditional collateralized EE at a primary time point is obtained by
averaging the conditional collateralized EE over all scenarios



