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Hazard Process Set-up

Terminology and notation:

1 The default time is a strictly positive random variable τ defined on the
underlying probability space (Ω,G,P).

2 We define the default indicator process Ht = 1{τ≤t} and we denote by H
its natural filtration.

3 We assume that we are given, in addition, some auxiliary filtration F and
we write G = H ∨ F, meaning that Gt = σ(Ht ,Ft ) for every t ∈ R+.

4 The filtration F is termed the reference filtration.
5 The filtration G is called the full filtration.
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Martingale Measure

The underlying market model is arbitrage-free, in the following sense:

1 Let the savings account B be given by

Bt = exp
(∫ t

0
ru du

)
, ∀ t ∈ R+,

where the short-term rate r follows an F-adapted process.
2 A spot martingale measure Q is associated with the choice of the

savings account B as a numéraire.
3 The underlying market model is arbitrage-free, meaning that it admits a

spot martingale measure Q equivalent to P. Uniqueness of a martingale
measure is not postulated.
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Hazard Process

Let us summarize the main features of the hazard process approach:

1 Let us denote by
Gt = Q(τ > t |Ft )

the survival process of τ with respect to the reference filtration F.
We postulate that G0 = 1 and Gt > 0 for every t ∈ [0,T ].

2 We define the hazard process Γ = − ln G of τ with respect to the
filtration F.

3 For any Q-integrable and FT -measurable random variable Y , the
following classic formula is valid

EQ(1{T<τ}Y |Gt ) = 1{t<τ}G−1
t EQ(GT Y |Ft ).
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Default Intensity

1 Assume that the supermartingale G is continuous.
2 We denote by G = µ− ν its Doob-Meyer decomposition.
3 Let the increasing process ν be absolutely continuous, that is,

dνt = υt dt for some F-adapted and non-negative process υ.
4 Then the process λt = G−1

t υt is called the F-intensity of default time.

Lemma

The process M, given by the formula

Mt = Ht −
∫ t∧τ

0
λu du = Ht −

∫ t

0
(1− Hu)λu du,

is a (Q,G)-martingale.
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Defaultable Claim

A generic defaultable claim (X ,A,Z , τ) consists of:

1 A promised contingent claim X representing the payoff received by the
holder of the claim at time T , if no default has occurred prior to or at
maturity date T .

2 A process A representing the dividends stream prior to default.
3 A recovery process Z representing the recovery payoff at time of default,

if default occurs prior to or at maturity date T .
4 A random time τ representing the default time.

Definition

The dividend process D of a defaultable claim (X ,A,Z , τ) maturing at T
equals, for every t ∈ [0,T ],

Dt = X1{τ>T}1[T ,∞[(t) +

∫
]0,t]

(1− Hu) dAu +

∫
]0,t]

Zu dHu.
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Ex-dividend Price

Recall that:

The process B represents the savings account.

A probability measure Q is a spot martingale measure.

Definition

The ex-dividend price S associated with the dividend process D equals,
for every t ∈ [0,T ],

St = Bt EQ

(∫
]t,T ]

B−1
u dDu

∣∣∣Gt

)
= 1{t<τ} S̃t

where Q is a spot martingale measure.

The ex-dividend price represents the (market) value of a defaultable
claim.

The F-adapted process S̃ is termed the pre-default value.
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Valuation Formula

Lemma

The value of a defaultable claim (X ,A,Z , τ) maturing at T equals

St = 1{t<τ}
Bt

Gt
EQ

(
B−1

T GT X1{t<T}+

∫ T

t
B−1

u GuZuλu du+

∫ T

t
B−1

u Gu dAu

∣∣∣Ft

)
where Q is a martingale measure.

Recall that µ is the martingale part in the Doob-Meyer decomposition
of G.

Let m be the (Q,F)-martingale given by the formula

mt = EQ

(
B−1

T GT X +

∫ T

0
B−1

u GuZuλu du +

∫ T

0
B−1

u Gu dAu

∣∣∣Ft

)
.
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Price Dynamics

Proposition

The dynamics of the value process S on [0,T ] are

dSt = −St− dMt + (1− Ht )
(
(rtSt − λtZt ) dt + dAt

)
+ (1− Ht )G−1

t

(
Bt dmt − St dµt

)
+ (1− Ht )G−2

t

(
St d〈µ〉t − Bt d〈µ,m〉t

)
.

The dynamics of the pre-default value S̃ on [0,T ] are

dS̃t =
(
(λt + rt )S̃t − λtZt

)
dt + dAt + G−1

t

(
Bt dmt − S̃t dµt

)
+ G−2

t

(
S̃t d〈µ〉t − Bt d〈µ,m〉t

)
.
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Forward Credit Default Swap

Definition

A forward CDS issued at time s, with start date U, maturity T , and recovery
at default is a defaultable claim (0,A,Z , τ) where

dAt = −κ1]U,T ](t) dLt , Zt = δt1[U,T ](t).

An Fs-measurable rate κ is the CDS rate.

An F-adapted process L specifies the tenor structure of fee payments.

An F-adapted process δ : [U,T ]→ R represents the default protection.

Lemma

The value of the forward CDS equals, for every t ∈ [s,U],

St (κ) = Bt EQ

(
1{U<τ≤T}B

−1
τ Zτ

∣∣∣Gt

)
− κBt EQ

(∫
]t∧U,τ∧T ]

B−1
u dLu

∣∣∣Gt

)
.
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Valuation of a Forward CDS

Lemma

The value of a credit default swap started at s, equals, for every t ∈ [s,U],

St (κ) = 1{t<τ}
Bt

Gt
EQ

(
−
∫ T

U
B−1

u δu dGu − κ
∫

]U,T ]

B−1
u Gu dLu

∣∣∣Ft

)
.

Note that St (κ) = 1{t<τ}S̃t (κ) where the F-adapted process S̃(κ) is the
pre-default value. Moreover

S̃t (κ) = P̃(t ,U,T )− κ Ã(t ,U,T )

where

P̃(t ,U,T ) is the pre-default value of the protection leg,

Ã(t ,U,T ) is the pre-default value of the fee leg per one unit of κ.
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Forward CDS Rate

The forward CDS rate is defined similarly as the forward swap rate for
a default-free interest rate swap.

Definition

The forward market CDS at time t ∈ [0,U] is the forward CDS in which the
Ft -measurable rate κ is such that the contract is valueless at time t .

The corresponding pre-default forward CDS rate at time t is the unique
Ft -measurable random variable κ(t ,U,T ), which solves the equation

S̃t (κ(t ,U,T )) = 0.

Recall that for any Ft -measurable rate κ we have that

S̃t (κ) = P̃(t ,U,T )− κ Ã(t ,U,T ).
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Forward CDS Rate

Lemma

For every t ∈ [0,U],

κ(t ,U,T ) =
P̃(t ,U,T )

Ã(t ,U,T )
= −

EQ

( ∫ T
U B−1

u δu dGu

∣∣∣Ft

)
EQ

( ∫
]U,T ]

B−1
u Gu dLu

∣∣∣Ft

) =
MP

t

MA
t

where the (Q,F)-martingales MP and MA are given by

MP
t = −EQ

(∫ T

U
B−1

u δu dGu

∣∣∣Ft

)
and

MA
t = EQ

(∫
]U,T ]

B−1
u Gu dLu

∣∣∣Ft

)
.
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Credit Default Swaption

Definition

A credit default swaption is a call option with expiry date R ≤ U and zero
strike written on the value of the forward CDS issued at time 0 ≤ s < R,
with start date U, maturity T , and an Fs-measurable rate κ.

The swaption’s payoff CR at expiry equals CR = (SR(κ))+.

Lemma

For a forward CDS with an Fs-measurable rate κ we have, for every t ∈ [s,U],

St (κ) = 1{t<τ}Ã(t ,U,T )(κ(t ,U,T )− κ).

It is clear that

CR = 1{R<τ}Ã(R,U,T )(κ(R,U,T )− κ)+.

A credit default swaption is formally equivalent to a call option on the forward
CDS rate with strike κ. This option is knocked out if default occurs prior to R.

M. Rutkowski Credit Default Swaps and Swaptions



Credit Default Swaptions
Credit Default Index Swaptions

Market Models for CDS Spreads

Valuation of Forward Credit Default Swaps
Hedging of Credit Default Swaptions
CIR Default Intensity Model

Credit Default Swaption

Lemma

The price at time t ∈ [s,R] of a credit default swaption equals

Ct = 1{t<τ}
Bt

Gt
EQ

(
GR

BR
Ã(R,U,T )(κ(R,U,T )− κ)+

∣∣∣Ft

)
.

Define an equivalent probability measure Q̂ on (Ω,FR) by setting

dQ̂
dQ

=
MA

R

MA
0
, Q-a.s.

Proposition

The price of the credit default swaption equals, for every t ∈ [s,R],

Ct = 1{t<τ}Ã(t ,U,T ) EQ̂
(
(κ(R,U,T )− κ)+

∣∣Ft
)

= 1{t<τ}C̃t .

The forward CDS rate (κ(t ,U,T ), t ≤ R) is a (Q̂,F)-martingale.
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Brownian Case

Let the filtration F be generated by a Brownian motion W under Q.

Since MP and MA are strictly positive (Q,F)-martingales, we have that

dMP
t = MP

t σ
P
t dWt , dMA

t = MA
t σ

A
t dWt ,

for some F-adapted processes σP and σA.

Lemma

The forward CDS rate (κ(t ,U,T ), t ∈ [0,R]) is (Q̂,F)-martingale and

dκ(t ,U,T ) = κ(t ,U,T )σκt dŴt

where σκ = σP − σA and the (Q̂,F)-Brownian motion Ŵ equals

Ŵt = Wt −
∫ t

0
σA

u du, ∀ t ∈ [0,R].
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Trading Strategies

Let ϕ = (ϕ1, ϕ2) be a trading strategy, where ϕ1 and ϕ2 are G-adapted
processes.

The wealth of ϕ equals, for every t ∈ [s,R],

Vt (ϕ) = ϕ1
t St (κ) + ϕ2

t A(t ,U,T )

and thus the pre-default wealth satisfies, for every t ∈ [s,R],

Ṽt (ϕ) = ϕ1
t S̃t (κ) + ϕ2

t Ã(t ,U,T ).

It is enough to search for F-adapted processes ϕ̃i , i = 1, 2 such that
the equality

1{t<τ}ϕ
i
t = ϕ̃i

t

holds for every t ∈ [s,R].
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Hedging of Credit Default Swaptions

The next result yields a general representation for hedging strategy.

Proposition

Let the Brownian motion W be one-dimensional. The hedging strategy
ϕ̃ = (ϕ̃1, ϕ̃2) for the credit default swaption equals, for t ∈ [s,R],

ϕ̃1
t =

ξ̃t

κ(t ,U,T )σκt
, ϕ̃2

t =
C̃t − ϕ̃1

t S̃t (κ)

Ã(t ,U,T )

where ξ̃ is the process satisfying

C̃R

Ã(R,U,T )
=

C̃0

Ã(0,U,T )
+

∫ R

0
ξ̃t dŴt .

The main issue is an explicit computation of the process ξ̃.

M. Rutkowski Credit Default Swaps and Swaptions



Credit Default Swaptions
Credit Default Index Swaptions

Market Models for CDS Spreads

Valuation of Forward Credit Default Swaps
Hedging of Credit Default Swaptions
CIR Default Intensity Model

Market Formula

Proposition

Assume that the volatility σκ = σP − σA of the forward CDS spread is
deterministic. Then the pre-default value of the credit default swaption
with strike level κ and expiry date R equals, for every t ∈ [0,U],

C̃t = Ãt

(
κt N

(
d+(κt ,U − t)

)
− κN

(
d−(κt ,U − t)

))
where κt = κ(t ,U,T ) and Ãt = Ã(t ,U,T ). Equivalently,

C̃t = P̃t N
(
d+(κt , t ,R)

)
− κ Ãt N

(
d−(κt , t ,R)

)
where P̃t = P̃(t ,U,T ) and

d±(κt , t ,R) =
ln(κt/κ)± 1

2

∫ R
t (σκ(u))2 du√∫ R

t (σκ(u))2 du
.
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Assumption 1

Definition

For any u ∈ R+, we define the F-martingale Gu
t = Q(τ > u |Ft ) for t ∈ [0,T ].

Let Gt = Gt
t . Then the process (Gt , t ∈ [0,T ]) is an F-supermartingale.

We also assume that G is a strictly positive process.

Assumption

There exists a family of F-adapted processes (f x
t ; t ∈ [0,T ], x ∈ R+) such

that, for any u ∈ R+,

Gu
t =

∫ ∞
u

f x
t dx , ∀ t ∈ [0,T ].
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Default Intensity

For any fixed t ∈ [0,T ], the random variable f ·t represents the conditional
density of τ with respect to the σ-field Ft , that is,

f x
t dx = Q(τ ∈ dx |Ft ).

We write f t
t = ft and we define λ̂t = G−1

t ft .

Lemma

Under Assumption 1, the process (Mt , t ∈ [0,T ]) given by the formula

Mt = Ht −
∫ t

0
(1− Hu)λ̂u du

is a G-martingale.

It can be deduced from the lemma that λ̂ = λ is the default intensity.
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Assumption 2

Assumption

The filtration F is generated by a one-dimensional Brownian motion W.

We now work under Assumptions 1-2. We have that

For any fixed u ∈ R+, the F-martingale Gu satisfies, for t ∈ [0,T ],

Gu
t = Gu

0 +

∫ t

0
gu

s dWs

for some F-predictable, real-valued process (gu
t , t ∈ [0,T ]).

For any fixed x ∈ R+, the process (f x
t , t ∈ [0,T ]) is an (Q,F)-martingale

and thus there exists an F-predictable process (σx
t , t ∈ [0,T ]) such that,

for t ∈ [0,T ],

f x
t = f x

0 +

∫ t

0
σx

s dWs.
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Survival Process

The following relationship is valid, for any u ∈ R+ and t ∈ [0,T ],

gu
t =

∫ ∞
u

σx
t dx .

By applying the Itô-Wentzell-Kunita formula, we obtain the following
auxiliary result, in which we denote gs

s = gs and f s
s = fs.

Lemma

The Doob-Meyer decomposition of the survival process G equals, for every
t ∈ [0,T ],

Gt = G0 +

∫ t

0
gs dWs −

∫ t

0
fs ds.

In particular, G is a continuous process.
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Volatility of Pre-Default Value

Under the assumption that B,Z and A are deterministic, the volatility of
the pre-default value process can be computed explicitly in terms of σu

t .
Recall that, for t ∈ [0,T ],

f x
t = f x

0 +

∫ t

0
σx

s dWs, gu
t =

∫ ∞
u

σx
t dx .

Corollary

If B,Z and A are deterministic then we have that, for every t ∈ [0,T ],

dS̃t =
(

(r(t) + λt )S̃t − λtZ (t)
)

dt + dA(t) + ζT
t dWt

with ζT
t = G−1

t B(t)νT
t where

νT
t = B−1(T )XGT

t +

∫ T

t
B−1(u)Z (u)σu

t du +

∫ T

t
B−1(u)gu

t dA(u).
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Volatility of Forward CDS Rate

Lemma

If B, δ and L are deterministic then the forward CDS rate satisfies under Q̂

dκ(t ,U,T ) = κ(t ,U,T )
(
σP

t − σA
t
)

dŴt

where the process Ŵ , given by the formula

Ŵt = Wt −
∫ t

0
σA

u du, ∀ t ∈ [0,R],

is a Brownian motion under Q̂ and

σP
t =

(∫ T

U
B−1(u)δ(u)σu

t du
)(∫ T

U
B−1(u)δ(u)f u

t du
)−1

σA
t =

(∫ Y

U
B−1(u)gu

t du
)(∫ T

U
B−1(u)Gu

t du
)−1

.
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CIR Default Intensity Model

We make the following standing assumptions:
1 The default intensity process λ is governed by the CIR dynamics

dλt = µ(λt ) dt + ν(λt ) dWt

where µ(λ) = a− bλ and ν(λ) = c
√
λ.

2 The default time τ is given by

τ = inf
{

t ∈ R+ :

∫ t

0
λu du ≥ Θ

}
where Θ is a random variable with the unit exponential distribution,
independent of the filtration F.
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Model Properties

From the martingale property of f u we have, for every t ≤ u,

f u
t = EQ(fu |Ft ) = EQ(λuGu |Ft ).

The immersion property holds between F and G so that Gt = exp(−Λt ),
where Λt =

∫ t
0 λu du is the hazard process. Therefore

f s
t = EQ(λse−Λs |Ft ).

Let us denote

Hs
t = EQ

(
e−(Λs−Λt )

∣∣Ft
)

=
Gs

t

Gt
.

It is important to note that for the CIR model

Hs
t = em(t,s)−n(t,s)λt = Ĥ(λt , t , s)

where Ĥ(·, t , s) is a strictly decreasing function when t < s.
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Volatility of Forward CDS Rate

We assume that:
1 The tenor structure process L is deterministic.
2 The savings account is B is deterministic. We denote β = B−1.
3 We also assume that δ is constant.

Proposition

The volatility of the forward CDS rate satisfies σκ = σP − σA where

σP
t = ν(λt )

β(T )HT
t n(t ,T )− β(U)HU

t n(t ,U) +
∫ T

U r(u)β(u)Hu
t n(t , u) du

β(U)HU
t − β(T )HT

t −
∫ T

U r(u)β(u)Hu
t du

and

σA
t = ν(λt )

∫
]U,T ]

β(u)Hu
t n(t , u) dL(u)∫

]U,T ]
β(u)Hu

t dL(u)
.
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Equivalent Representations

One can show that

CR = 1{R<τ}

(
δ

∫ T

U
B(R, u)λu

R du − κ
∫

]U,T ]

B(R, u)Hu
R dL(u)

)+

.

Straightforward computations lead to the following representation

CR = 1{R<τ}

(
δB(R,U)HU

R −
∫

]U,T ]

B(R, u)Hu
R dχ(u)

)+

where the function χ : R+ → R satisfies

dχ(u) = −δ ∂ ln B(R, u)

∂u
du + κ dL(u) + δ d1[T ,∞[(u).
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Auxiliary Functions

We define auxiliary functions ζ : R+ → R+ and ψ : R→ R+ by setting

ζ(x) = δB(R,U)Ĥ(x ,R,U)

and
ψ(y) =

∫
]U,T ]

B(R, u)Ĥ(y ,R, u) dχ(u).

There exists a unique FR-measurable random variable λ∗R such that

ζ(λR) = δB(R,U)Ĥ(λR ,R,U) =

∫
]U,T ]

B(R, u)Ĥ(λ∗R ,R, u) dχ(u) = ψ(λ∗R).

It suffices to check that λ∗R = ψ−1(ζ(λR)) is the unique solution to this
equation.
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Explicit Valuation Formula

The payoff of the credit default swaption admits the following
representation

CR = 1{R<τ}

∫
]U,T ]

B(R, u)
(
Ĥ(λ∗R ,R, u)− Ĥ(λR ,R, u)

)+ dχ(u).

Let D0(t , u) be the price at time t of a unit defaultable zero-coupon bond
with zero recovery maturing at u ≥ t and let B(t , u) be the price at time t
of a (default-free) unit discount bond maturing at u ≥ t .

If the interest rate process r is independent of the default intensity λ then
D0(t , u) is given by the following formula

D0(t , u) = 1{t<τ}B(t , u)Hu
t .
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Explicit Valuation Formula

Let P(λt ,U, u,K ) stand for the price at time t of a put bond option
with strike K and expiry U written on a zero-coupon bond maturing
at u computed in the CIR model with the interest rate modeled by λ.

Proposition

Assume that R = U. Then the payoff of the credit default swaption equals

CU =

∫
]U,T ]

(
K (u)D0(U,U)− D0(U, u)

)+ dχ(u)

where K (u) = B(U, u)Ĥ(λ∗U ,U, u) is deterministic, since λ∗U = ψ−1(δ).

The pre-default value of the credit default swaption equals

C̃t =

∫
]U,T ]

B(t , u)P(λt ,U, u, K̂ (u)) dχ(u)

where K̂ (u) = K (u)/B(U, u) = Ĥ(λ∗U ,U, u).
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Hedging Strategy

1 The price Pu
t := P(λt ,U, u, K̂ (u)) of the put bond option in the CIR

model with the interest rate λ is known to be

Pu
t = K̂ (u)HU

t PU(HU
U ≤ K̂ (u) |λt )− Hu

t Pu(HU
u ≤ K̂ (u) |λt )

where Hu
t = Ĥ(λt , t , u) is the price at time t of a zero-coupon bond

maturing at u.
2 Let us denote Zt = Hu

t /H
U
t and let us set, for every u ∈ [U,T ],

Pu(HU
u ≤ K̂ (u) |λt ) = Ψu(t ,Zt ).

3 Then the pricing formula for the bond put option becomes

Pu
t = K̂ (u)HU

t ΨU(t ,Zt )− Hu
t Ψu(t ,Zt )
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Hedging of Credit Default Swaptions

Let us recall the general representation for the hedging strategy when F is
the Brownian filtration.

Proposition

The hedging strategy ϕ̃ = (ϕ̃1, ϕ̃2) for the credit default swaption equals, for
t ∈ [s,U],

ϕ̃1
t =

ξ̃t

κ(t ,U,T )σκt
, ϕ̃2

t =
C̃t − ϕ̃1

t S̃t (κ)

Ã(t ,U,T )

where ξ̃ is the process satisfying

C̃U

Ã(U,U,T )
=

C̃0

Ã(0,U,T )
+

∫ U

0
ξ̃t dŴt .

All terms were already computed, except for the process ξ̃.
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Computation of ξ̃

Recall that we are searching for the process ξ̃ such that

d(C̃t/Ã(t ,U,T )) = ξ̃t dŴt .

Proposition

Assume that R = U. Then we have that, for every t ∈ [0,U],

ξ̃t =
1

Ãt

(∫
]U,T ]

B(t , u)
(
ϑtHu

t
(
bu

t − bU
t
)
− Pu

t bU
t

)
dχ(u)− C̃tσ

A
t

)
where

Ãt = Ã(t ,U,T ), Hu
t = Ĥ(λt , t , u), bu

t = cn(t , u)
√
λt , Pu

t = P(λt ,U, u, K̂ (u))

and
ϑt = K̂ (u)

∂ΨU

∂z
(t ,Zt )−Ψu(t ,Zt )− Zt

∂Ψu

∂z
(t ,Zt ).
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Hedging Strategy

For R = U, we obtain the following final result for hedging strategy.

Proposition

Consider the CIR default intensity model with a deterministic short-term
interest rate. The replicating strategy ϕ̃ = (ϕ̃1, ϕ̃2) for the credit default
swaption maturing at R = U equals, for any t ∈ [0,U],

ϕ̃1
t =

ξ̃t

κ(t ,U,T )σκt
, ϕ̃2

t =
C̃t − ϕ̃1

t S̃t (κ)

Ã(t ,U,T )
,

where the processes σκ, C̃ and ξ̃ are given in previous results.

Note that for R < U the problem remains open, since a closed-form solution
for the process ξ̃ is not readily available in this case.
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Credit Default Index Swaptions
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Credit Default Index Swap

1 A credit default index swap (CDIS) is a standardized contract that is
based upon a fixed portfolio of reference entities.

2 At its conception, the CDIS is referenced to n fixed companies that are
chosen by market makers.

3 The reference entities are specified to have equal weights.
4 If we assume each has a nominal value of one then, because of the

equal weighting, the total notional would be n.
5 By contrast to a standard single-name CDS, the ‘buyer’ of the CDIS

provides protection to the market makers.
6 By purchasing a CDIS from market makers the investor is not receiving

protection, rather they are providing it to the market makers.
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Credit Default Index Swap

1 In exchange for the protection the investor is providing, the market
makers pay the investor a periodic fixed premium, otherwise known as
the credit default index spread.

2 The recovery rate δ ∈ [0, 1] is predetermined and identical for all
reference entities in the index.

3 By purchasing the index the investor is agreeing to pay the market
makers 1− δ for any default that occurs before maturity.

4 Following this, the nominal value of the CDIS is reduced by one; there is
no replacement of the defaulted firm.

5 This process repeats after every default and the CDIS continues on until
maturity.
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Default Times and Filtrations

1 Let τ1, . . . , τn represent default times of reference entities.
2 We introduce the sequence τ(1) < · · · < τ(n) of ordered default times

associated with τ1, . . . , τn. For brevity, we write τ̂ = τ(n).
3 We thus have G = H(n) ∨ F̂, where H(n) is the filtration generated by

the indicator process H(n)
t = 1{τ̂≤t} of the last default and the filtration F̂

equals F̂ = F ∨H(1) ∨ · · · ∨H(n−1).
4 We are interested in events of the form {τ̂ ≤ t} and {τ̂ > t} for a fixed t .
5 Morini and Brigo (2007) refer to these events as the armageddon and

the no-armageddon events. We use instead the terms collapse event
and the pre-collapse event.

6 The event {τ̂ ≤ t} corresponds to the total collapse of the reference
portfolio, in the sense that all underlying credit names default either prior
to or at time t .
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Basic Lemma

1 We set F̂t = Q(τ̂ ≤ t | F̂t ) for every t ∈ R+.
2 Let us denote by Ĝt = 1− F̂t = Q(τ̂ > t | F̂t ) the corresponding survival

process with respect to the filtration F̂ and let us temporarily assume that
the inequality Ĝt > 0 holds for every t ∈ R+.

3 Then for any Q-integrable and F̂T -measurable random variable Y we
have that

EQ(1{T<τ̂}Y |Gt ) = 1{t<τ̂} Ĝ−1
t EQ(ĜT Y | F̂t ).

Lemma

Assume that Y is some G-adapted stochastic process. Then there exists a
unique F̂-adapted process Ŷ such that, for every t ∈ [0,T ],

Yt = 1{t<τ̂}Ŷt .

The process Ŷ is termed the pre-collapse value of the process Y .
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Notation and Assumptions

We write T0 = T < T1 < · · · < TJ to denote the tenor structure of the
forward-start CDIS, where:

1 T0 = T is the inception date;
2 TJ is the maturity date;
3 Tj is the j th fee payment date for j = 1, 2, . . . , J;
4 aj = Tj − Tj−1 for every j = 1, 2, . . . , J.

The process B is an F-adapted (or, at least, F̂-adapted) and strictly positive
process representing the price of the savings account.

The underlying probability measure Q is interpreted as a martingale measure
associated with the choice of B as the numeraire asset.
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Forward Credit Default Index Swap

Definition

The discounted cash flows for the seller of the forward CDIS issued at time
s ∈ [0,T ] with an Fs-measurable spread κ are, for every t ∈ [s,T ],

Dn
t = Pn

t − κAn
t ,

where

Pn
t = (1− δ)Bt

n∑
i=1

B−1
τi 1{T<τi≤TJ}

An
t = Bt

J∑
j=1

ajB−1
Tj

n∑
i=1

(
1− 1{Tj≥τi}

)
are discounted payoffs of the protection leg and the fee leg per one basis
point, respectively. The fair price at time t ∈ [s,T ] of a forward CDIS equals

Sn
t (κ) = EQ(Dn

t |Gt ) = EQ(Pn
t |Gt )− κEQ(An

t |Gt ).
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Forward Credit Default Index Swap

1 The quantities Pn
t and An

t are well defined for any t ∈ [0,T ] and they do
not depend on the issuance date s of the forward CDIS under
consideration.

2 They satisfy
Pn

t = 1{T<τ̂}P
n
t , An

t = 1{T<τ̂}A
n
t .

3 For brevity, we will write Jt to denote the reduced nominal at time
t ∈ [s,T ], as given by the formula

Jt =
n∑

i=1

(
1− 1{t≥τi}

)
.

4 In what follows, we only require that the inequality Ĝt > 0 holds for every
t ∈ [s,T1], so that, in particular, ĜT1 = Q(τ̂ > T1 | F̂T1 ) > 0.
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Pre-collapse Price

Lemma

The price at time t ∈ [s,T ] of the forward CDIS satisfies

Sn
t (κ) = 1{t<τ̂}Ĝ

−1
t EQ(Dn

t | F̂t ) = 1{t<τ̂}Ŝ
n
t (κ),

where the pre-collapse price of the forward CDIS satisfies Ŝn
t (κ) = P̂n

t − κÂn
t ,

where

P̂n
t = Ĝ−1

t EQ(Pn
t | F̂t ) = (1− δ)Ĝ−1

t Bt EQ

( n∑
i=1

B−1
τi 1{T<τi≤TJ}

∣∣∣ F̂t

)

Ân
t = Ĝ−1

t EQ(An
t | F̂t ) = Ĝ−1

t Bt EQ

( J∑
j=1

ajB−1
Tj

JTj

∣∣∣ F̂t

)
.

The process Ân
t may be thought of as the pre-collapse PV of receiving risky

one basis point on the forward CDIS payment dates Tj on the residual
nominal value JTj . The process P̂n

t represents the pre-collapse PV of the
protection leg.
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Pre-Collapse Fair CDIS Spread

Since the forward CDIS is terminated at the moment of the nth default with no
further payments, the forward CDS spread is defined only prior to τ̂ .

Definition

The pre-collapse fair forward CDIS spread is the F̂t -measurable random
variable κn

t such that Ŝn
t (κn

t ) = 0.

Lemma

Assume that ĜT1 = Q(τ̂ > T1 | F̂T1 ) > 0. Then the pre-collapse fair forward
CDIS spread satisfies, for t ∈ [0,T ],

κn
t =

P̂n
t

Ân
t

=
(1− δ) EQ

(∑n
i=1 B−1

τi 1{T<τi≤TJ}

∣∣∣ F̂t

)
EQ

(∑J
j=1 ajB−1

Tj
JTj

∣∣∣ F̂t

) .

The price of the forward CDIS admits the following representation

Sn
t (κ) = 1{t<τ̂}Â

n
t (κn

t − κ).
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Market Convention for Valuing a CDIS

Market quote for the quantity Ân
t , which is essential in marking-to-market of a

CDIS, is not directly available. The market convention for approximation of
the value of Ân

t hinges on the following postulates:
1 all firms are identical from time t onwards (homogeneous portfolio);

therefore, we just deal with a single-name case, so that either all firms
default or none;

2 the implied risk-neutral default probabilities are computed using a flat
single-name CDS curve with a constant spread equal to κn

t .

Then
Ân

t ≈ JtPVt (κ
n
t ),

where PVt (κt ) is the risky present value of receiving one basis point at all
CDIS payment dates calibrated to a flat CDS curve with spread equal to κn

t ,
where κn

t is the quoted CDIS spread at time t .

The conventional market formula for the value of the CDIS with a fixed spread
κ reads, on the pre-collapse event {t < τ̂},

Ŝt (κ) = JtPVt (κ
n
t )(κn

t − κ).
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Market Payoff of a Credit Default Index Swaption

1 The conventional market formula for the payoff at maturity U ≤ T of the
payer credit default index swaption with strike level κ reads

CU =
(
1{U<τ̂}PVU

(
κn

U
)
JU(κn

U − κn
0)− 1{U<τ̂}PVU(κ)n(κ− κn

0) + LU

)+

,

where L stands for the loss process for our portfolio so that, for every
t ∈ R+,

Lt = (1− δ)
n∑

i=1

1{τi≤t}.

2 The market convention is due to the fact that the swaption has physical
settlement and the CDIS with spread κ is not traded. If the swaption is
exercised, its holder takes a long position in the on-the-run index and is
compensated for the difference between the value of the on-the-run
index and the value of the (non-traded) index with spread κ, as well as
for defaults that occurred in the interval [0,U].
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Put-Call Parity for Credit Default Index Swaptions

1 For the sake of brevity, let us denote, for any fixed κ > 0,

f (κ, LU) = LU − 1{U<τ̂}PVU(κ)n(κ− κn
0).

2 Then the payoff of the payer credit default index swaption entered at time
0 and maturing at U equals

CU =
(
1{U<τ̂}PVU

(
κn

U
)
JU(κn

U − κn
0) + f (κ, LU)

)+

,

whereas the payoff of the corresponding receiver credit default index
swaption satisfies

PU =
(
1{U<τ̂}PVU

(
κn

U
)
JU(κn

0 − κn
U)− f (κ, LU)

)+

.

3 This leads to the following equality, which holds at maturity date U

CU − PU = 1{U<τ̂}PVU
(
κn

U
)
JU(κn

U − κn
0) + f (κ, LU).
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Model Payoff of a Credit Default Index Swaption

1 The model payoff of the payer credit default index swaption entered at
time 0 with maturity date U and strike level κ equals

CU = (Sn
U(κ) + LU)+

or, more explicitly

CU =
(
1{U<τ̂}Â

n
U(κU − κ) + LU

)+

.

2 To formally derive obtain the model payoff from the market payoff, it
suffices to postulate that

PVU(κ)n ≈ PVU
(
κU
)
JU ≈ Ân

U .
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Loss-Adjusted Forward CDIS

1 Since LU ≥ 0 and
LU = 1{U<τ̂}LU + 1{U≥τ̂}LU

the payoff CU can also be represented as follows

CU = (Sn
U(κ) + 1{U<τ̂}LU)+ + 1{U≥τ̂}LU = (Sa

U(κ))+ + CL
U ,

where we denote
Sa

U(κ) = Sn
U(κ) + 1{U<τ̂}LU

and
CL

U = 1{U≥τ̂}LU .

2 The quantity Sa
U(κ) represents the payoff at time U of the loss-adjusted

forward CDIS.
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Loss-Adjusted Forward CDIS

1 The discounted cash flows for the seller of the loss-adjusted forward
CDIS (that is, for the buyer of the protection) are, for every t ∈ [0,U],

Da
t = Pa

t − κAn
t ,

where
Pa

t = Pn
t + BtB−1

U 1{U<τ̂}LU .

2 It is essential to observe that the payoff Da
U is the U-survival claim, in the

sense that
Da

U = 1{U<τ̂}D
a
U .

3 Any other adjustments to the payoff Pn
t or An

t are also admissible,
provided that the properties

Pa
U = 1{U<τ̂}P

a
U , Aa

U = 1{U<τ̂}A
a
U

hold.
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Price of the Loss-Adjusted Forward CDIS

Lemma

The price of the loss-adjusted forward CDIS equals, for every t ∈ [0,U],

Sa
t (κ) = 1{t<τ̂}Ĝ

−1
t EQ(Da

t | F̂t ) = 1{t<τ̂}Ŝ
a
t (κ),

where the pre-collapse price satisfies Ŝa
t (κ) = P̂a

t − κÂn
t , where in turn

P̂a
t = Ĝ−1

t EQ(Pa
t | F̂t ), Ân

t = Ĝ−1
t EQ(An

t | F̂t )

or, more explicitly,

P̂a
t = Ĝ−1

t Bt EQ

(
(1− δ)

n∑
i=1

B−1
τi 1{T<τi≤TJ} + 1{U<τ̂}B

−1
U LU

∣∣∣ F̂t

)
and

Ân
t = Ĝ−1

t Bt EQ

( J∑
j=1

ajB−1
Tj

JTj

∣∣∣ F̂t

)
.
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Pre-Collapse Loss-Adjusted Fair CDIS Spread

We are in a position to define the fair loss-adjusted forward CDIS spread.

Definition

The pre-collapse loss-adjusted fair forward CDIS spread at time t ∈ [0,U] is
the F̂t -measurable random variable κa

t such that Ŝa
t (κa

t ) = 0.

Lemma

Assume that ĜT1 = Q(τ̂ > T1 | F̂T1 ) > 0. Then the pre-collapse loss-adjusted
fair forward CDIS spread satisfies, for t ∈ [0,U],

κa
t =

P̂a
t

Ân
t

=
EQ

(
(1− δ)

∑n
i=1 B−1

τi 1{T<τi≤TJ} + 1{U<τ̂}B−1
U LU

∣∣∣ F̂t

)
EQ

(∑J
j=1 ajB−1

Tj
JTj

∣∣∣ F̂t

) .

The price of the forward CDIS has the following representation, for t ∈ [0,T ],

Sa
t (κ) = 1{t<τ̂}Â

n
t (κa

t − κ).
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Model Pricing of Credit Default Index Swaptions

1 It is easy to check that the model payoff can be represented as follows

CU = 1{U<τ̂}Â
n
U(κa

U − κ)+ + 1{U≥τ̂}LU .

2 The price at time t ∈ [0,U] of the credit default index swaption is thus
given by the risk-neutral valuation formula

Ct = Bt EQ
(
1{U<τ̂}B

−1
U Ân

U(κa
U − κ)+

∣∣Gt
)

+ Bt EQ
(
1{U≥τ̂}B

−1
U LU

∣∣Gt
)
.

3 Using the filtration F̂, we can obtain a more explicit representation for the
first term in the formula above, as the following result shows.

M. Rutkowski Credit Default Swaps and Swaptions



Credit Default Swaptions
Credit Default Index Swaptions

Market Models for CDS Spreads

Credit Default Index Swap
Credit Default Index Swaption
Loss-Adjusted Forward CDIS

Model Pricing of Credit Default Index Swaptions

Lemma

The price at time t ∈ [0,U] of the payer credit default index swaption equals

Ct = EQ

(
ĜUB−1

U Ân
U(κa

U − κ)+
∣∣∣ F̂t

)
+ Bt EQ

(
1{U≥τ̂}B

−1
U LU

∣∣∣Gt

)
.

1 The random variable Y = B−1
U Ân

U(κa
U − κ)+ is manifestly F̂U -measurable

and Y = 1{U<τ̂}Y . Hence the equality is an immediate consequence of
the basic lemma.

2 On the collapse event {t ≥ τ̂} we have 1{U≥τ̂}B−1
U LU = B−1

U n(1− δ)
and thus the pricing formula reduces to

Ct = Bt EQ
(
1{U≥τ̂}B

−1
U LU

∣∣Gt
)

= n(1−δ)EQ

(
B−1

U

∣∣Gt

)
= n(1−δ)B(t ,T ),

where B(t ,T ) is the price at t of the U-maturity risk-free zero-coupon
bond.
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Model Pricing of Credit Default Index Swaptions

1 Let us thus concentrate on the pre-collapse event {t < τ̂}. We now have
Ct = Ca

t + CL
t , where

Ca
t = BtĜ−1

t EQ

(
ĜUB−1

U Ân
U(κa

U − κ)+
∣∣∣ F̂t

)
and

CL
t = Bt EQ

(
1{U≥τ̂>t}B

−1
U LU

∣∣ F̂t
)
.

The last equality follows from the well known fact that on {t < τ̂} any
Gt -measurable event can be represented by an F̂t -measurable event, in
the sense that for any event A ∈ Gt there exists an event Â ∈ F̂t such
that 1{t<τ̂}A = 1{t<τ̂}Â.
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Model Pricing of Credit Default Index Swaptions

1 The computation of CL
t relies on the knowledge of the risk-neutral

conditional distribution of τ̂ given F̂t and the term structure of interest
rates, since on the event {U ≥ τ̂ > t} we have B−1

U LU = B−1
U n(1− δ).

2 For Ca
t , we define an equivalent probability measure Q̂ on (Ω, F̂U)

dQ̂
dQ

= cĜUB−1
U Ân

U , Q-a.s.

3 Note that the process η̂t = cĜtB−1
t Ân

t , t ∈ [0,U], is a strictly positive
F̂-martingale under Q, since

η̂t = cĜtB−1
t Ân

t = c EQ

( J∑
j=1

ajB−1
Tj

JTj

∣∣∣ F̂t

)
and Q(τ > Tj | F̂Tj ) = ĜTj > 0 for every j .

4 Therefore, for every t ∈ [0,U],

dQ̂
dQ
∣∣F̂t = EQ(η̂U | F̂t ) = η̂t , Q-a.s.
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Model Pricing Formula for Credit Default Index Swaptions

Lemma

The price at time t ∈ [0,U] of the payer credit default index swaption on the
pre-collapse event {t < τ̂} equals

Ct = Ân
t EQ̂

(
(κa

U − κ)+
∣∣ F̂t
)

+ Bt EQ
(
1{U≥τ̂>t}B

−1
U LU

∣∣ F̂t
)
.

The next lemma establishes the martingale property of the process κa

under Q̂.

Lemma

The pre-collapse loss-adjusted fair forward CDIS spread κa
t , t ∈ [0,U], is a

strictly positive F̂-martingale under Q̂.
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Black Formula for Credit Default Index Swaptions

1 Our next goal is to establish a suitable version of the Black formula for
the credit default index swaption.

2 To this end, we postulate that the pre-collapse loss-adjusted fair forward
CDIS spread satisfies

κa
t = κa

0 +

∫ t

0
σuκ

a
u dŴu, ∀ t ∈ [0,U],

where Ŵ is the one-dimensional standard Brownian motion under Q̂ with
respect to F̂ and σ is an F̂-predictable process.

3 The assumption that the filtration F̂ is the Brownian filtration would be too
restrictive, since F̂ = F ∨H(1) ∨ · · · ∨H(n−1) and thus F̂ will typically need
to support also discontinuous martingales.
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Market Pricing Formula for Credit Default Index Swaptions

Proposition

Assume that the volatility σ of the pre-collapse loss-adjusted fair forward
CDIS spread is a positive function. Then the pre-default price of the payer
credit default index swaption equals, for every t ∈ [0,U] on the pre-collapse
event {t < τ̂},

Ct = Ân
t

(
κa

t N
(
d+(κa

t , t ,U)
)
− κN

(
d−(κa

t , t ,U)
))

+ CL
t

or, equivalently,

Ct = P̂a
t N
(
d+(κa

t , t ,U)
)
− κÂn

t N
(
d−(κa

t , t ,U)
)

+ CL
t ,

where

d±(κa
t , t ,U) =

ln(κa
t /κ)± 1

2

∫ U
t σ2(u) du( ∫ U

t σ2(u) du
)1/2 .
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Approximation

Proposition

The price of a payer credit default index swaption can be approximated as
follows

Ct ≈ 1{t<τ̂}Â
n
t

(
κn

t N
(
d+(κn

t , t ,U)
)
− (κ− L̄t )N

(
d−(κn

t , t ,U)
))
,

where for every t ∈ [0,U]

d±(κn
t , t ,U) =

ln(κn
t /(κ− L̄t ))± 1

2

∫ U
t σ2(u) du( ∫ U

t σ2(u) du
)1/2

and
L̄t = EQ̂

(
(An

U)−1LU | F̂t
)
.
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Comments

1 Under usual circumstances, the probability of all defaults occurring prior
to U is expected to be very low.

2 However, as argued by Morini and Brigo (2007), this assumption is not
always justified, in particular, it is not suitable for periods when the
market conditions deteriorate.

3 It is also worth mentioning that since we deal here with the risk-neutral
probability measure, the probabilities of default events are known to
drastically exceed statistically observed default probabilities, that is,
probabilities of default events under the physical probability measure.
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Market Models for CDS Spreads
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Notation

1 Let (Ω,G,F,Q) be a filtered probability space, where F = (Ft )t∈[0,T ] is a
filtration such that F0 is trivial.

2 We assume that the random time τ defined on this space is such that
the F-survival process Gt = Q(τ > t |Ft ) is positive.

3 The probability measure Q is interpreted as the risk-neutral measure.
4 Let 0 < T0 < T1 < · · · < Tn be a fixed tenor structure and let us write

ai = Ti − Ti−1.
5 We denote ãi = ai/(1− δi ) where δi is the recovery rate if default occurs

between Ti−1 and Ti .
6 We denote by β(t ,T ) the default-free discount factor over the time

period [t ,T ].
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Bottom-up Approach under Deterministic Interest Rates

1 Assume first that the interest rate is deterministic.
2 The pre-default forward CDS spread κi corresponding to the

single-period forward CDS starting at time Ti−1 and maturing at Ti

equals

1 + ãiκ
i
t =

EQ
(
β(t ,Ti )1{τ>Ti−1}

∣∣Ft
)

EQ
(
β(t ,Ti )1{τ>Ti}

∣∣Ft
) , ∀ t ∈ [0,Ti−1].

3 Since the interest rate is deterministic, we obtain, for i = 1, . . . , n,

1 + ãiκ
i
t =

Q(τ > Ti−1 |Ft )

Q(τ > Ti |Ft )
, ∀ t ∈ [0,Ti−1],

and thus
Q(τ > Ti |Ft )

Q(τ > T0 |Ft )
=

i∏
j=1

1
1 + ãjκ

j
t

, ∀ t ∈ [0,T0].
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Auxiliary Probability Measure P

We define the probability measure P equivalent to Q on (Ω,FT ) by setting, for
every t ∈ [0,T ],

ηt =
dP
dQ

∣∣∣
Ft

=
Q(τ > Tn |Ft )

Q(τ > Tn |F0)
.

Lemma

For every i = 1, . . . , n, the process Zκ,i given by

Zκ,it =
n∏

j=i+1

(
1 + ãjκ

j
t

)
, ∀ t ∈ [0,Ti ],

is a positive (P,F)-martingale.
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CDS Martingale Measures

1 For any i = 1, . . . , n we define the probability measure Pi equivalent to P
on (Ω,FT ) by setting (note that Zκ,nt = 1 and thus Pn = P)

dPi

dP

∣∣∣
Ft

= ciZκ,it =
Q(τ > Ti )

Q(τ > Tn)

n∏
j=i+1

(
1 + ãjκ

j
t

)
.

2 Assume that the PRP holds under P = Pn with the Rk -valued spanning
(P,F)-martingale M. Then the PRP is also valid with respect to F under
any probability measure Pi for i = 1, . . . , n.

3 The positive process κi is a (Pi ,F)-martingale and thus it satisfies, for
i = 1, . . . , n,

κi
t = κi

0 +

∫
(0,t]

κi
sσ

i
s · dΨi (M)s

for some Rk -valued, F-predictable process σi , where Ψi (M) is the
Pi -Girsanov transform of M

Ψi (M)t = M i
t −
∫

(0,t]
(Z i

s)−1 d [Z i ,M]s.
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Dynamics of Forward CDS Spreads

Proposition

Let the processes κi , i = 1, . . . , n, be defined by

1 + ãiκ
i
t =

EQ
(
β(t ,Ti )1{τ>Ti−1}

∣∣Ft
)

EQ
(
β(t ,Ti )1{τ>Ti}

∣∣Ft
) , ∀ t ∈ [0,Ti−1].

Assume that the PRP holds with respect to F under P with the spanning
(P,F)-martingale M = (M1, . . . ,Mk ). Then there exist Rk -valued,
F-predictable processes σi such that the joint dynamics of processes
κi , i = 1, . . . , n under P are given by

dκi
t =

k∑
l=1

κi
tσ

i,l
t dM l

t −
n∑

j=i+1

ãjκ
i
tκ

j
t

1 + ãjκ
j
t

k∑
l,m=1

σi,l
t σ

j,m
t d [M l,c ,Mm,c ]t

− 1
Z i

t−
∆Z i

t

k∑
l=1

κi
tσ

i,l
t ∆M l

t .
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Top-down Approach: First Step

Proposition

Assume that:
(i) the positive processes κi , i = 1, . . . , n, are such that the processes
Zκ,i , i = 1, . . . , n are (P,F)-martingales, where

Zκ,it =
n∏

j=i+1

(
1 + ãjκ

j
t

)
.

(ii) M = (M1, . . . ,Mk ) is a spanning (P,F)-martingale.
(iii) σi , i = 1, . . . , n are Rk -valued, F-predictable processes.
Then:
(i) for every i = 1, . . . , n, the process κi is a (Pi ,F)-martingale where

dPi

dP

∣∣∣
Ft

= ci

n∏
j=i+1

(
1 + ãjκ

j
t

)
,

(ii) the joint dynamics of processes κi , i = 1, . . . , n under P are given by the
previous proposition.
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Top-down Approach: Second Step

1 We will now construct a default time τ consistent with the dynamics of
forward CDS spreads. Let us set

M i−1
Ti−1

=
i−1∏
j=1

1
1 + ãjκ

j
Ti−1

, M i
Ti =

i∏
j=1

1
1 + ãjκ

j
Ti

.

2 Since the process ãiκ
i is positive, we obtain, for every i = 0, . . . , n,

GTi := M i
Ti =

M i−1
Ti−1

1 + ãiκi
Ti

≤ M i−1
Ti−1

=: Gi−1
Ti−1

.

3 The process GTi = M i
Ti

is thus decreasing for i = 0, . . . , n.
4 We make use of the canonical construction of default time τ taking

values in {T0, . . . ,Tn}.
5 We obtain, for every i = 0, . . . , n,

P(τ > Ti |FTi ) = GTi =
i∏

j=1

1
1 + ãjκ

j
Ti

.
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Bottom-up Approach under Independence

Assume that we are given a model for Libors (L1, . . . , Ln) where
Li = L(t ,Ti−1) and CDS spreads (κ1, . . . , κn) in which:

1 The default intensity γ generates the filtration Fγ .
2 The interest rate process r generates the filtration Fr .
3 The probability measure Q is the spot martingale measure.

4 The H-hypothesis holds, that is, F
Q
↪→ G, where F = Fr ∨ Fγ .

5 The PRP holds with the (Q,F)-spanning martingale M.

Lemma

It is possible to determine the joint dynamics of Libors and CDS spreads
(L1, . . . , Ln, κ1, . . . , κn) under any martingale measure Pi .
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Top-down Approach under Independence

To construct a model we assume that:
1 A martingale M = (M1, . . . ,Mk ) has the PRP with respect to (P,F).
2 The family of process Z i given by

Z L,κ,i
t :=

n∏
j=i+1

(1 + ajLj
t )(1 + ãjκ

j
t )

are martingales on the filtered probability space (Ω,F,P).
3 Hence there exists a family of probability measures Pi , i = 1, . . . , n

on (Ω,FT ) with the densities

dPi

dP
= ciZ L,κ,i .
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Dynamics of LIBORs and CDS Spreads

Proposition

The dynamics of Li and κi under Pn with respect to the spanning
(P,F)-martingale M are given by

dLi
t =

k∑
l=1

ξi,l
t dM l

t −
n∑

j=i+1

aj

1 + ajLj
t

k∑
l,m=1

ξi,l
t ξ

j,m
t d [M l,c ,Mm,c ]t

−
n∑

j=i+1

ãj

1 + ãjκ
j
t

k∑
l,m=1

ξi,l
t σ

j,m
t d [M l,c ,Mm,c ]t −

1
Z i

t
∆Z i

t

k∑
l=1

ξi,l
t ∆M l

t

and

dκi
t =

k∑
l=1

σi,l
t dM l

t −
n∑

j=i+1

aj

1 + ajLj
t

k∑
l,m=1

σi,l
t ξ

j,m
t d [M l,c ,Mm,c ]t

−
n∑

j=i+1

ãj

1 + ãjκ
j
t

k∑
l,m=1

σi,l
t σ

j,m
t d [M l,c ,Mm,c ]t −

1
Z i

t
∆Z i

t

k∑
l=1

σi,l
t ∆M l

t .
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Bottom-up Approach: One- and Two-Period Spreads

1 Let (Ω,G,F,Q) be a filtered probability space, where F = (Ft )t∈[0,T ] is a
filtration such that F0 is trivial.

2 We assume that the random time τ defined on this space is such that
the F-survival process Gt = Q(τ > t |Ft ) is positive.

3 The probability measure Q is interpreted as the risk-neutral measure.
4 Let 0 < T0 < T1 < · · · < Tn be a fixed tenor structure and let us write

ai = Ti − Ti−1 and ãi = ai/(1− δi )

5 We no longer assume that the interest rate is deterministic.
6 We denote by β(t ,T ) the default-free discount factor over the time

period [t ,T ].
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One-Period CDS Spreads

The one-period forward CDS spread κi = κi−1,i satisfies, for t ∈ [0,Ti−1],

1 + ãiκ
i
t =

EQ
(
β(t ,Ti )1{τ>Ti−1}

∣∣Ft
)

EQ
(
β(t ,Ti )1{τ>Ti}

∣∣Ft
) .

Let Ai−1,i be the one-period CDS annuity

Ai−1,i
t = ãi EQ

(
β(t ,Ti )1{τ>Ti}

∣∣Ft
)

and let

P i−1,i
t = EQ

(
β(t ,Ti )1{τ>Ti−1}

∣∣Ft
)
− EQ

(
β(t ,Ti )1{τ>Ti}

∣∣Ft
)
.

Then

κi
t =

P i−1,i
t

Ai−1,i
t

, ∀ t ∈ [0,Ti−1].
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One-Period CDS Spreads

Let Ai−2,i stand for the two-period CDS annuity

Ai−2,i
t = ãi−1 EQ

(
β(t ,Ti−1)1{τ>Ti−1}

∣∣Ft
)

+ ãi EQ
(
β(t ,Ti )1{τ>Ti}

∣∣Ft
)

and let

P i−2,i
t =

i∑
j=i−1

(
EQ

(
β(t ,Tj )1{τ>Tj−1}

∣∣∣Ft

)
− EQ

(
β(t ,Tj )1{τ>Tj}

∣∣∣Ft

))
.

The two-period CDS spread κ̃i = κi−2,i is given by the following expression

κ̃i
t = κi−2,i

t =
P i−2,i

t

Ai−2,i
t

=
P i−2,i−1

t + P i−1,i
t

Ai−2,i−1
t + Ai−1,i

t

, ∀ t ∈ [0,Ti−1].

M. Rutkowski Credit Default Swaps and Swaptions



Credit Default Swaptions
Credit Default Index Swaptions

Market Models for CDS Spreads

One-Period Case
One- and Two-Period Case
Towards Generic Swap Models
Conclusions

One-Period CDS Measures

1 Our aim is to derive the semimartingale decomposition of κi , i = 1, . . . , n
and κ̃i , i = 2, . . . , n under a common probability measure.

2 We start by noting that the process An−1,n is a positive (Q,F)-martingale
and thus it defines the probability measure Pn on (Ω,FT ).

3 The following processes are easily seen to be (Pn,F)-martingales

Ai−1,i
t

An−1,n
t

=
n∏

j=i+1

ãj (κ̃
j
t − κ

j
t )

ãj−1(κj−1
t − κ̃j

t )
=

ãn

ãi

n∏
j=i+1

κ̃j
t − κ

j
t

κj−1
t − κ̃j

t

.

4 Given this family of positive (Pn,F)-martingales, we define a family of
probability measures Pi for i = 1, . . . , n such that κi is a martingale
under Pi .
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Two-Period CDS Measures

1 For every i = 2, . . . , n, the following process is a (Pi ,F)-martingale

Ai−2,i
t

Ai−1,i
t

=
ãi−1EQ

(
β(t ,Ti−1)1{τ>Ti−1}

∣∣Ft
)

+ ãiEQ
(
β(t ,Ti )1{τ>Ti}

∣∣Ft
)

EQ
(
β(t ,Ti )1{τ>Ti}

∣∣Ft
)

= ãi−1

(
Ai−2,i−1

t

Ai−1,i
t

+ 1

)

= ãi

(
κ̃i

t − κi
t

κi−1
t − κ̃i

t

+ 1

)
.

2 Therefore, we can define a family of the associated probability measures
P̃i on (Ω,FT ), for every i = 2, . . . , n.

3 It is obvious that κ̃i is a martingale under P̃i for every i = 2, . . . , n.
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One and Two-Period CDS Measures

We will summarise the above in the following diagram

Q
dPn
dQ−−−−−→ Pn

dPn−1
dPn−−−−−→ Pn−1

dPn−2

dPn−1−−−−−→ . . . −−−−−→ P2 −−−−−→ P1

d P̃n
dPn

y d P̃n−1

dPn−1

y y d P̃2

dP2

y
P̃n P̃n−1 . . . P̃2

where
dPn

dQ
= An−1,n

t

dPi

dPi+1 =
Ai−1,i

t

Ai,i+1
t

=
ãi+1

ãi

(
κ̃i+1

t − κi+1
t

κi
t − κ̃

i+1
t

)
d P̃i

dPi =
Ai−2,i

t

Ai−1,i
t

= ãi

(
κ̃i

t − κi
t

κi−1
t − κ̃i

t

+ 1

)
.
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Bottom-up Approach: Joint Dynamics

1 We are in a position to calculate the semimartingale decomposition of
(κ1, . . . , κn, κ̃2, . . . , κ̃n) under Pn.

2 It suffices to use the following Radon-Nikodým densities

dPi

dPn =
Ai−1,i

t

An−1,n
t

=
ãn

ãi

n∏
j=i+1

κ̃j
t − κ

j
t

κj−1
t − κ̃j

t

d P̃i

dPn =
Ai−2,i

t

An−1,n
t

= ãn

(
κ̃i

t − κi
t

κi−1
t − κ̃i

t

+ 1

)
n∏

j=i+1

κ̃j
t − κ

j
t

κj−1
t − κ̃j

t

= ãn

 n∏
j=i

κ̃j
t − κ

j
t

κj−1
t − κ̃j

t

+
n∏

j=i+1

κ̃j
t − κ

j
t

κj−1
t − κ̃j

t


= ãi−1

dPi−1

dPn + ãi
dPi

dPn .

3 Explicit formulae for the joint dynamics of one and two-period spreads
are available.
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Top-down Approach: Postulates

1 The processes κ1, . . . , κn and κ̃2, . . . , κ̃n are F-adapted.
2 For every i = 1, . . . , n, the process Zκ,i

Zκ,it =
cn

ci

n∏
j=i+1

κ̃j
t − κ

j
t

κj−1
t − κ̃j

t

is a positive (P,F)-martingale where c1, . . . , cn are constants.
3 For every i = 2, . . . , n, the process Z κ̃,i given by the formula

Z κ̃,i = c̃i (Zκ,i + Zκ,i−1) = c̃i
κi−1 − κi

κi−1 − κ̃i Zκ,i

is a positive (P,F)-martingale where c̃2, . . . , c̃n are constants.
4 The process M = (M1, . . . ,Mk ) is the (P,F)-spanning martingale.
5 Probability measures Pi and P̃i have the density processes Zκ,i and Z κ̃,i .

In particular, the equality Pn = P holds, since Zκ,n = 1.
6 Processes κi and κ̃i are martingales under Pi and P̃i , respectively.
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Top-down Approach: Lemma

Lemma

Let M = (M1, . . . ,Mk ) be the (P,F)-spanning martingale. For any
i = 1, . . . , n, the process X i admits the integral representation

κi
t =

∫
(0,t]

σi
s · dΨi (M)s

and
κ̃i

t =

∫
(0,t]

ζ i
s · dΨ̃i (M)s

where σi = (σi,1, . . . , σi,k ) and ζ i = (ζ i,1, . . . , ζ i,k ) are Rk -valued,
F-predictable processes that can be chosen arbitrarily. The (Pi ,F)-martingale
Ψi (M l ) is given by

Ψi (M l )t = M l
t −
[
(ln Zκ,i )c ,M l,c

]
t
−
∑

0<s≤t

1
Zκ,is

∆Zκ,is ∆M l
s.

An analogous formula holds for the Girsanov transform Ψ̃i (M l ).
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Top-down Approach: Joint Dynamics

Proposition

The semimartingale decomposition of the (Pi ,F)-spanning martingale Ψi (M)
under the probability measure Pn = P is given by, for i = 1, . . . , n,

Ψi (M)t = Mt −
n∑

j=i+1

∫
(0,t]

(κj−1
s − κj

s) ζ j
s · d [Mc ]s

(κ̃j
s − κj

s)(κj−1
s − κ̃j

s)
−

n∑
j=i+1

∫
(0,t]

σj
s · d [Mc ]s

κ̃j
s − κj

s

−
n∑

j=i+1

∫
(0,t]

σj−1
s · d [Mc ]s

κj−1
s − κ̃j

s

−
∑

0<s≤t

1
Zκ,is

∆Zκ,is ∆Ms.

An analogous formula holds for Ψ̃i (M). Hence the joint dynamics of the
process (κ1, . . . , κn, κ̃2, . . . , κ̃n) under P = Pn are explicitly known.
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Towards Generic Swap Models

Let (Ω,F,P) be a filtered probability space. Suppose that we are given a
family of swaps S = {κ1, . . . , κl} and a family of processes {Z 1, . . . ,Z l}
satisfying the following conditions for every j = 1, . . . , l :

1 the process κj is a positive special semimartingale,
2 the process κjZ j is a (P,F)-martingale,
3 the process Z j is a positive (P,F)-martingale with Z j

0 = 1,
4 the process Z j is uniquely expressed as a function of some subset of

swaps in S, specifically, Z j = fj (κn1 , . . . , κnk ) where fj : Rk → R is a C2

function in variables belonging to {κn1 , . . . , κnk } ⊂ S.
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Volatility-Based Modelling

1 For the purpose of modelling, we select a (P,F)-martingale M and we
define κj under Pj as follows

κj
t =

∫ t

0
κj

sσ
j
s · dΨj (M)s.

2 Therefore, specifying κj is equivalent to specifying the “volatility” σj .
3 The martingale part of κj can be expressed as

(κj )m
t =

∫ t

0
κj

sσ
j
s ·dΨj (M)s−

∫
(0,t]

Z j
sκ

j
sσ

j
s · d

[ 1
Z j ,Ψ

j (M)
]

s
=

∫ t

0
κj

sσ
j
s ·dM j

s

where M j is a (P,F)-martingale.
4 The Radon-Nikodým density process Z j has the following decomposition

Z j
t =

k∑
i=1

∫
[0,t)

∂fj
∂xi

(κ
n1
s , . . . , κ

nk
s )κ

ni
s σ

ni
s · dMni

s .

5 Hence the choice of “volatilities” completely specifies the model.
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