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Talk outline

• Basic ideas of Structural Models: comparison with Intensity Models;

• Analytically Tractable First Passage model (AT1P);

• Credit Default Swap calibration with the AT1P model: the Lehman example;

• Extension: Scenario Barrier Time-Varying Volatility model (SBTV);

• Using Structural Models to price counterparty risk and hybrid equity/credit products:

the Equity Return Swap example;

• Structural Models: multiname products;

• Conclusions;

• References.
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Structural Models: Basic Ideas

The stylized structure of the firm economy is modeled through:

• V (t): stochastic value for the value of the firm;

• t 7→ H(t): default barrier representing the debt of the firm and safety covenants;

• τ : the default time is the first time instant where the value of the firm V

touches the safety barrier H.

The basic idea is that if the firm value goes below the safety level, then the firm is deemed

to be no longer able to pay its debt and is forced into bankruptcy.

Default is induced by observable market information (the value of the firm V ).

Important difference with Intensity Models: In basic Structural Models there is

nothing external to the basic market information in the default process. Default is

induced by a completely observable variable, the value of the firm.

For these models we have Gt = Ft, i.e. history on past and present default plus the basic

market information coincides with the history of the basic market information itself.
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Intensity (Reduced Form) Models: Basic Ideas

• The default time τ obeys roughly the following:

Prob(τ ∈ [t, t + dt)|τ > t, market info up to t) = λ(t)dt

• λ is called intensity or hazard rate. It is also an instantaneous credit spread.

• If λ is deterministic, τ is the first jump time of a Poisson Process.

• The jump is NOT triggered by basic market observables: It is an exogenous

component.

• The survival probability can be computed by

Prob(τ > t) = e
−

∫ t
0 λ(u)du
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Intensity and Structural Models: Different Uses

At this stage it is not possible to say that intensity models are better than structural

models or vice versa. The two kind of models are both useful and both needed, and are to

be used for different products.

Intensity Models:

• Intensity models offer parallels with interest rate models, and are thus more suited to

model credit spreads;

• They are typically easier to calibrate to corporate bond or Credit Default Swap market

information;

• More suited to refined relative value pricing (CDS options etc);

• In cases with stochastic intensity the extension to multiname situations can be difficult

(First to default, CDO’s, etc);

• Calibration of the “default correlation” component (jump-terms Copula function) among

different names is not clear and often based on debatable links with the equity market.
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Intensity and Structural Models: Different Uses

Structural Models:

• Structural models are easier to use in situations where we need to model also equity

variables taking into account correlation;

• In their basic formulation they are more suited to “fundamental pricing” that to refined

relative value pricing;

• Cases include equity return swaps with counterparty risk, total rate of return swaps,

and counterparty risk in any equity product;

• They are more difficult to calibrate with precision to Credit Default Swaps or Corporate

Bonds data;

• They are more naturally extended to multi-name situation (no “out of the blue” copula)

than stochastic intensity models;

• Different names default correlation has a much more grounded link with equity

correlation than in intensity models; in principle it would suffice to estimate historical

correlation of equity returns.
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Structural Models: Merton’s Model

The first Structural Model is due to Merton (1974). The value of the firm V is assumed

to be a tradable asset and to follow a standard Geometric Brownian Motion. Under

the risk neutral measure:

dV (t) = (r − k)V (t)dt + σV (t)dW (t)

(r is the risk free rate, k is the payout ratio and σ is the volatility, all constant).

This dynamics is lognormal; Crouhy et al (2000) notice that “this assumption [lognormal

V] is quite robust and, according to KMVs own empirical studies, actual data conform

quite well to this hypothesis”.

V is seen as composed by the equity part S and the debt part D, so that at each

point in time the following equivalence holds:

Firm Value = Debt Value + Equity, V (t) = D(t) + S(t)
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Structural Models: Merton’s Model

Simple assumption for debt: zero coupon debt with maturity T̄ and face value L.

Default is linked to capability of the firm to pay back all the debt issued.

If at maturity T̄ the firm value V is greater than L, then all the debt is paid back and the

firm survives; if V is smaller than L then the company is not able to pay the bondholders

and then there is the default. Analytically

τ = T̄1{VT̄<L} +∞1{VT̄≥L}

Default can happen only at the debt maturity T̄ . This is a quite restrictive assumption

and we will see later in the discussion how it can be relaxed.

The value of the debt at maturity is hence DT̄ = min(VT̄ ;L), from which, at t < T̄

Dt = Et

[
D(t; T̄ )min(VT̄ ;L)

]
= Et

[

D(t; T̄ )
[

VT̄ − (VT̄ − L)
+
]]

=

= Et

[

D(t; T̄ )
[

L− (L− VT̄ )
+
]]

= P (t; T̄ )L− Put(t; T̄ ;Vt;σ
2
;L)
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Structural Models: Black-Cox Model

Drawbacks of Merton’s Model: default can happen only at the debt maturity T̄ .

Unsatisfactory: there could be scenarios in which default happens before T̄ , related to

problems of optimal capital structure and stockholders decisions to reorganize the firm.

Black and Cox (1976) assume a barrier representing safety covenants for the firm. Default

is triggered by the firm value V hitting this barrier from above. At default the firm

reimburses the debt-holders. Let H(t; T̄ ) be the barrier with time dependence on t and

final zero coupon debt maturity T̄ .

Black and Cox assume a constant parameters Geometric Brownian Motion

dV (t) = (r − k)V (t)dt + σVV (t)dW (t)

and an exponential barrier (we omit the T̄ dependence in H)

H(t) =

{
L if t = T̄

Ke−γ(T̄−t) if t < T̄
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Structural Models: Black-Cox Model

H(t) =

{
L if t = T̄

Ke−γ(T̄−t) if t < T̄

γ and K are positive parameters. Black-Cox assume also Ke−γ(T̄−t) < Le−r(T̄−t).

In the Black-Cox model, the survival probability is given by (see Bielecki and Rutkowski

(2002) for derivation)

Prob(τ > t) = Φ






ln
(

V0
H(0)

)

+ ν̃t

σV

√
t




−

(
H(0)

V0

)2ã

Φ






ln
(

H(0)
V0

)

+ ν̃t

σV

√
t






where ν̃ = r − k − γ − 1
2σ

2
V and ã = ν̃

σ2
V

.
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Fundamental Credit Derivative: Credit Default Swap

A Credit Default Swap (CDS) is a basic contract ensuring protection against default.

Two parties: The Protection Buyer “A” and the Protection Seller “B”. The contract

is written on the default of an underlying company “C” (Reference Entity); τ is the the

default time of “C”.

Protection → protection LGD at default τ if Ta < τ ≤ Tb → Protection

Seller “B” ← rate R at Ta+1, . . . , Tb or until default τ ← Buyer “A”

LGD = 1 − REC, where LGD is the Loss Given Default and REC is the Recovery Rate.

The CDS discounted payoff (from a protection buyer viewpoint) is:

ΠCDS(t;Ta, Tb, REC, R) = +LGD
(

1{Ta<τ≤Tb}D(t; τ)
)

−R
[
∑b

i=a+1

(

(Ti − Ti−1)1{τ>Ti}D(t;Ti) + (τ − Ti−1)1{Ti−1<τ≤Ti}D(t; τ)

)]

(1)
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Fundamental Credit Derivative: Credit Default Swap

Ignoring accrued amounts, we can approximate the discounted payoff (1) as:

ΠCDS(t;Ta, Tb) = LGD

b∑

i=a+1

1{Ti−1<τ≤Ti}D(t;Ti)−R
b∑

i=a+1

(Ti−Ti−1)1{τ≥Ti}D(t;Ti)

(2)

According to Risk Neutral valuation, the CDS value can be computed as

CDS(t;Ta, Tb, REC, R) = E
[
ΠCDS(t;Ta, Tb, REC, R)

]

Since we know that Prob(τ > t) ≡ Q(τ > t) = E
[
1{τ>t}

]
and considering

deterministic interest rates, we get:

CDS(t;Ta, Tb, REC, R) = LGD

b∑

i=a+1

[Q(τ > Ti−1)− Q(τ > Ti)]P (t;Ti)

− R

b∑

i=a+1

(Ti − Ti−1)Q(τ ≥ Ti)P (t;Ti) (3)
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Fundamental Credit Derivative: Credit Default Swap

Market quotes a CDS rate that makes the contract fair, i.e.:

CDS(t;Ta, Tb, REC, R) = 0

Hence if we have a series of market quotes R̂1, . . . , R̂n for CDS with different tenors

T̂1, . . . , T̂n, using (3) we can find a term structure of survival probability for the

Reference Entity.

For example, in the case of Intensity Models, we can choose a piecewise linear (or

constant) intensity λ(t) and calibrate to CDS premia. We know, in fact, that Q(τ >

t) = exp
(

−
∫ t

0
λ(u)du

)

; so we can choose a value λ̂i for each tenor T̂i and make a

calibration to fit all market quotes.

T̂i R̂i (bps) λ̂i Survi
16 Sep 2009 100.0%

1y 28.0 0.466% 99.5%
3y 36.5 0.902% 98.2%

5y 44.5 1.022% 96.3%
7y 48.5 0.982% 94.4%

10y 52.5 1.170% 91.4%
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Black Cox: CDS Calibration?

Can one make the Black-Cox model reproduce liquid CDS data (CDS Calibration)?

R̂1y dV = (r − k)dt + σVV (t)dW (t)

R̂2y
...

←→ H(t) =

{
L if t = T̄

Ke−γ(T̄−t) if t < T̄

R̂10y model parameters: σV , L, K and γ

Typically one has from 5 to 10 CDS market quotes and just 4 parameters in the Black-Cox

model to calibrate them. Further, even if we had only 4 CDS quotes, the 4 parameters

σV , L, K and γ are not much flexible.

Can we extend the model to make it more flexible and capable of exactly retrieving any

number of quoted CDS?
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Structural Models: CDS Calibration?

Our strategy:

R̂1y dV = (r − k)dt+ σV (t) V (t)dW (t)

R̂2y
...

←→ H(t) = . . .

R̂10y t 7→ σV (t), t 7→ H(t)

Now we would have infinite parameters (all the values of σV (t), for example) to account

for all CDS market quotes.

The problem is: can we insert a time-dependent V dynamics and preserve barrier-like

analytical formulas for survival probabilities Q(τ > t) (and thus CDS, etc.)?
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Structural Models: Barrier Options. CDS Calibration?

The diffculties in formulating such a model (like our AT1P below) and the reason why

nobody tried it before is that in general Barrier option problems are difficult or impossible

in presence of time-dependent volatilities or general curved barriers.

However, some recent work shows that it is possible to find analytical barrier option prices

when the barrier has a particular curved shape depending partly on the time dependent

volatility (Lo et al. (2003), Rapisarda (2003)).

Our AT1P model builds on these results: indeed, our curved barrier Ĥ(t) will depend on

σV (t).
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Analytically Tractable 1st Passage (AT1P) Model

AT1P model: Let the risk neutral firm V dynamics and the default barrier Ĥ(t) be

dV (t) = V (t) (r(t)− k(t)) dt + V (t) σV (t) dW (t)

Ĥ(t) = H exp

(∫ t

0

(

(r(s)− k(s)) − B σV (s)
2

)

ds

)

=
H

V0

E[Vt]e

(

−B
∫ t
0 σ2sds

)

and let the default time τ be the 1st time V hits Ĥ from above, starting from V0 > H.

Here H > 0 and B are free parameters we may use to shape the barrier.

Then the survival probability is given analytically by

Q(τ > t) = Φ




ln

(
V0
H

)

+2B−1
2

∫ t
0 σ(s)2ds

√
∫ t
0 σ(s)2ds



−
(

H
V0

)2B−1
Φ




ln

(

H
V0

)

+2B−1
2

∫ t
0 σ(s)2ds

√
∫ t
0 σ(s)2ds





(4)
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Analytically Tractable 1st Passage (AT1P) Model

Proof of the previous result can be found, for example, in Brigo and Tarenghi (2004), using

B = (1 + 2β)/2.

The default barrier Ĥ(t) varies in time, following company and market conditions.

Ĥ(t) = H exp

[∫ t

0

(

r(s)− k(s)− Bσ
2
s

)

ds

]

= H
V0
E[Vt]

︸ ︷︷ ︸

Backbone of the barrier,

proportional to expected asset value

× exp

(

−B
∫ t

0

σ
2
sds

)

︸ ︷︷ ︸

Cutting some slack

in high volatility conditions

Also, observe that H and V always appear in the formulas in ratios like V
H : This

homogeneity property allows us to rescale the initial value of the firm V0 = 1, and

express the barrier parameter H as a fraction of it. In this case we do not need to know

the real value of the firm.
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The AT1P Structural Model: CDS calibration

In the AT1P model we have Q(τ > t) = formula in (σ(t), H,B). We could choose, for

example, a piecewise constant shape for the volatility, assigning a pillar value σ̂i to each

tenor of CDS market quotes. In this case we would have:

R̂1y, R̂2y, . . . , R̂10y ←→ σ̂1y, σ̂2y, . . . , σ̂10y, H,B

where σ(t) = σ̂i for T̂i−1 ≤ t < T̂i (T0 = 0).

This means that we have n + 2 free parameters for n market quotes.

Our choice is to fix B (as previously seen, B can change the shape of the barrier, giving

some freedom in calibration).

Still, we have too many degrees of freedom; we can proceed in two directions:

• Use an exogenous estimate for H and calibrate all the σ̂i’s;

• Use some estimate of the firm value volatility and calibrate H.
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The AT1P Structural Model: CDS calibration

Our choice is to use some estimate for H; we set H/V0 = 0.4 (analogy with CDS

recovery).

We then calibrate all the market quotes of CDS: for each maturity T̂i, we look for a

volatility σ̂i coherent with the market quote R̂i.

This procedure is justified: we are not interested in estimating the real process of the

firm value, neither the real capital structure of the firm, but only in reproducing risk

neutral default probabilities with a model that makes sense also economically. We

are interested in the economic interpretation and not in sharply estimating the capital

structure of the firm.

We appreciate the structural model interpretation as a tool for assessing the realism of the

outputs of calibrations, and as an instrument to check economic consequences and possible

diagnostics.
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A Case Study with AT1P: Lehman Brothers default history

• August 23, 2007: Lehman announces that it is going to shut one of its home lending

units (BNC Mortgage) and lay off 1,200 employees. The bank says it would take a

$52 million charge to third-quarter earnings.

• March 18, 2008: Lehman announces better than expected first-quarter results (but

profits have more than halved).

• June 9, 2008: Lehman confirms the booking of a $2.8 billion loss and announces plans

to raise $6 billion in fresh capital by selling stock. Lehman shares lose more than 9%

in afternoon trade.

• June 12, 2008: Lehman shakes up its management; its chief operating officer and

president, and its chief financial officer had been removed from their posts.

• August 28, 2008: Lehman prepares to lay off 1,500 people. The Lehman executives

have been knocking on doors all over the world seeking a capital infusion.

• September 9, 2008: Lehman shares fall 45%.

• September 14, 2008: Lehman files for bankruptcy protection and hurtles toward

liquidation after it failed to find a buyer.
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A Case Study with AT1P: Lehman Brothers CDS Calibration
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A Case Study with AT1P: Lehman Brothers CDS Calibration

Date: July 10, 2007

REC = 40%

H = 0.4 (AT1P)

T̂i R̂i (bps)

1y 16

3y 29

5y 45

7y 50

10y 58

T̂i λ̂i (bps) Surv (Int) σ̂i Surv (AT1P)

10 Jul 2007 100.0% 100.0%

1y 0.267% 99.7% 29.2% 99.7%

3y 0.949% 98.5% 14.0% 98.5%

5y 1.499% 96.1% 14.5% 96.1%

7y 0.676% 94.1% 12.0% 94.1%

10y 2.191% 90.1% 12.7% 90.2%
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A Case Study with AT1P: Lehman Brothers CDS Calibration

Date: March 18, 2008

REC = 40%

H = 0.4 (AT1P)

T̂i R̂i (bps)

1y 409

3y 369

5y 309

7y 290

10y 264

T̂i λ̂i (bps) Surv (Int) σ̂i Surv (AT1P)

18 Mar 2008 100.0% 100.0%

1y 6.759% 93.5% 45.3% 93.3%

3y 4.638% 83.4% 24.7% 83.2%

5y 1.872% 78.1% 18.2% 77.9%

7y 5.769% 72.4% 19.6% 72.3%

10y -0.364% 66.8% 17.4% 66.4%
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A Case Study with AT1P: Lehman Brothers CDS Calibration

Date: June 12, 2008

REC = 40%

H = 0.4 (AT1P)

T̂i R̂i (bps)

1y 397

3y 315

5y 277

7y 258

10y 240

T̂i λ̂i (bps) Surv (Int) σ̂i Surv (AT1P)

12 Jun 2008 100.0% 100.0%

1y 6.563% 93.6% 45.0% 93.5%

3y 2.174% 85.8% 21.9% 85.6%

5y 4.742% 80.1% 18.6% 79.9%

7y 1.579% 75.2% 18.1% 75.0%

10y 4.369% 68.8% 17.5% 68.7%
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A Case Study with AT1P: Lehman Brothers CDS Calibration

Date: September 12, 2008

REC = 40%

H = 0.4 (AT1P)

T̂i R̂i (bps)

1y 1437

3y 902

5y 710

7y 636

10y 588

T̂i λ̂i (bps) Surv (Int) σ̂i Surv (AT1P)

12 Sep 2008 100.0% 100.0%

1y 23.260% 79.2% 62.2% 78.4%

3y -6.432% 67.0% 30.8% 65.5%

5y 18.686% 59.2% 24.3% 59.1%

7y -8.049% 53.3% 26.9% 52.5%

10y 23.294% 42.4% 29.5% 43.4%
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AT1P Structural Model: Comments

We have seen that AT1P can calibrate exactly CDS market quotes. Also, according to

our experience, sometimes it shows a stronger calibration power than common intensity

models (under stress conditions, intensity pillar values may become negative).

However, looking at calibration results with more attention, we find:

• Scarce relevance of barriers in calibration.

• High discrepancy between first volatility bucket and the following values.

When the default boundary is deterministic, diffusion models tend to calibrate a

considerably probability of default by one-year (shortest horizon credit spread) only

supposing particularly high one-year volatility.
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Accounting for Market Uncertainty

Hence the problem is also related to the fundamental assumption that the default

threshold is a deterministic, known function of time, based on reliable accounting

data.

This is a very strong assumption and usually it is not true: balance sheet information

is not certain, possibly because the company is hiding information, or because a real

valuation of the firm assets is not easy (for example in case of derivative instruments).

Public investors, then, may have only a partial and coarse information about the true

value of the firm assets or the related liability-dependent firm condition that would trigger

default.

H in our model is the ratio between the initial level of the default barrier and the

initial value of the company assets.

To take market uncertainty into account in a realistic and albeit simple manner, H is

replaced by a random variable assuming different values in different scenarios.
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Scenario Barrier Time-Varying Volatility (SBTV) Model

The risk neutral dynamics for the firm value is (like in the AT1P):

dV (t) = V (t)(r(t)− k(t))dt + V (t)σV (t)dW (t)

Now we introduce I = 1, 2, . . . , N independent default scenarios (indicating

uncertainty on the capital situation of the firm), represented by different default barriers

Ĥ
I
(t) = H

I
exp

[∫ t

0

(

r(s)− k(s)− BσV (s)
2
)

ds

]

where each scenario I has probability Q(I = i) = pi and, of course, pi ∈ [0, 1],
∑N

i=1 pi = 1.

Also, what is important, each scenario I is independent of the brownian motion W .

Hence, the SBTV model acts like a mixture of AT1P scenarios.
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Scenario Barrier Time-Varying Volatility (SBTV) Model

In this framework, using the Iterated Expectaion Law, for a given discounted payoff Π

we have:

E [Π] = E
[

E
[

Π|HI
]]

=

N∑

i=1

piE
[

Π|HI
= Hi

]

In particular, for CDS with the SBTV model we have

SBTV CDS (t;Ta, Tb, REC, R) =
N∑

i=1

pi · AT1PCDS

(

t;Ta, Tb, REC, R, Hi

)

where AT1PCDS is the CDS price computed according to the AT1P survival probability

formula when H is set to Hi.
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The SBTV Structural Model: CDS Calibration

Now we have

R̂1y, R̂2y, . . . , R̂10y ←→ σ̂1y, σ̂2y, . . . , σ̂10y, H1, H2, . . . , HN , p1, p2, . . . , pN−1, B

where σ(t) = σ̂i for T̂i−1 ≤ t < T̂i (T0 = 0) and pN = 1−
∑N−1

i=1 pi.

This means that we have n + 2N free parameters for n market quotes. We proceed in

this way:

• Like in the AT1P we fix B before calibrating;

• Use n = 5 market quotes: the most liquid and used tenors are T̂1 = 1y, T̂2 =

3y, T̂3 = 5y, T̂4 = 7y, T̂5 = 10y, with CDS rates R̂1y, R̂3y, R̂5y, R̂7y, R̂10y;

• We use N = 2 scenarios (according to our experience, a larger value of N does not

add much information);

We still have 5 market quotes with 8 free parameters. The exact calibration, hence, is

run out in 2 steps.
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The SBTV Structural Model: CDS Calibration, 1st Step

• We limit our analysis to the first three CDS market quotes: T̂1 = 1y, T̂2 = 3y,

T̂3 = 5y; in this way n = 3;

• We set σ̂1y = σ̂3y = σ̂5y = σ̄ where σ̄ is a free value for volatility to be calibrated;

• We choose to fix H1 (the lowest barrier) to 0.4 (as in the AT1P).

• Now the only free parameters are H2, p1, σ̄;

• We calibrate them by minimization of the following target function

3∑

k=1

[

R
MKT
k − R

SBTV
k

]2

that is the sum of squared difference between CDS market rates and the rates obtained

by the SBTV model.
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The SBTV Structural Model: CDS Calibration, 2nd Step

• We now have calibrated σ̄, H2, p1;

• We return to consider all quotes R̂i, i = 1, . . . , 5;

• We consider 5 free volatility buckets σ̂i, i = 1, . . . , 5;

• We run exact calibration to CDS market quotes.

Observe that from 1st step to 2nd step, we re-calibrate the first three volatility buckets.

This is done in order to obtain exact calibration to market quotes;

Anyway, if the result of the first calibration is good, the refinement to σ̂i=1,2,3 due to

second step calibration is negligible.
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A Case Study with SBTV: Lehman Brothers CDS Calibration

Date: July 10, 2007

REC = 40%

H = 0.4 (AT1P)

H1 = 0.4000 p1 = 96.2%

H2 = 0.7313 p2 = 3.8%

}

SBTV

T̂i R̂i (bps)

1y 16

3y 29

5y 45

7y 50

10y 58

T̂i σ̂i Surv (SBTV) σ̂i Surv (AT1P)

10 Jul 2007 100.0% 100.0%

1y 16.6% 99.7% 29.2% 99.7%

3y 16.6% 98.5% 14.0% 98.5%

5y 16.6% 96.1% 14.5% 96.1%

7y 12.6% 94.1% 12.0% 94.1%

10y 12.9% 90.2% 12.7% 90.2%
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A Case Study with SBTV: Lehman Brothers CDS Calibration

Date: March 18, 2008

REC = 40%

H = 0.4 (AT1P)

H1 = 0.4000 p1 = 65.6%

H2 = 0.8006 p2 = 34.4%

}

SBTV

T̂i R̂i (bps)

1y 409

3y 369

5y 309

7y 290

10y 264

T̂i σ̂i Surv (SBTV) σ̂i Surv (AT1P)

18 Mar 2008 100.0% 100.0%

1y 16.3% 93.4% 45.3% 93.3%

3y 16.3% 83.4% 24.7% 83.2%

5y 16.3% 78.1% 18.2% 77.9%

7y 18.1% 72.4% 19.6% 72.3%

10y 15.7% 66.5% 17.4% 66.4%
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A Case Study with SBTV: Lehman Brothers CDS Calibration

Date: June 12, 2008

REC = 40%

H = 0.4 (AT1P)

H1 = 0.4000 p1 = 74.6%

H2 = 0.7971 p2 = 25.4%

}

SBTV

T̂i R̂i (bps)

1y 397

3y 315

5y 277

7y 258

10y 240

T̂i σ̂i Surv (SBTV) σ̂i Surv (AT1P)

12 Jun 2008 100.0% 100.0%

1y 18.7% 93.6% 45.0% 93.5%

3y 18.7% 85.7% 21.9% 85.6%

5y 18.7% 80.1% 18.6% 79.9%

7y 17.4% 75.1% 18.1% 75.0%

10y 16.4% 68.8% 17.5% 68.7%
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A Case Study with SBTV: Lehman Brothers CDS Calibration

Date: September 12, 2008

REC = 40%

H = 0.4 (AT1P)

H1 = 0.4000 p1 = 50.0%

H2 = 0.8427 p2 = 50.0%

}

SBTV

T̂i R̂i (bps)

1y 1437

3y 902

5y 710

7y 636

10y 588

T̂i σ̂i Surv (SBTV) σ̂i Surv (AT1P)

12 Sep 2008 100.0% 100.0%

1y 19.6% 79.3% 62.2% 78.4%

3y 19.6% 66.2% 30.8% 65.5%

5y 19.6% 59.6% 24.3% 59.1%

7y 21.8% 52.9% 26.9% 52.5%

10y 23.7% 43.6% 29.5% 43.4%
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AT1P and SBTV Structural Models: Comments

AT1P and SBTV:

• High fit to market quotes;

• Efficient formulas for calibration;

• Regular results;

• Link with firm economy;

• Equity like underlying dynamics;

• SBTV: more realistic results, more informative interpretation.

Possible developments:

• Natural extension to hybrid equity-credit pricing and counterparty risk valuation;

• SBTV: it is possible to add default contagion effects by using multivariate random

variable (HASSET1,HASSET2).
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Counterparty Risk in Equity Return Swap (ERS)

Consider an Equity Return Swap (ERS). We are a default-free company “A” entering a

contract with counterparty “B”. The reference underlying equity is a default-free company

“C”.

“A” and “B” agree on an amount K of stocks of “C” (with price S0) to be taken as

nominal (N = KS0). The contract starts in Ta = 0 and has final maturity Tb = T .

At t = 0 there is no exchange of cash (alternatively, we can think that “B” delivers to

“A” an amount K of “C” stock and receives a cash amount equal to KS0).

At intermediate times “A” pays to “B” the dividend flows of the stocks (if any) in exchange

for a periodic rate (e.g. semi-annual LIBOR or EURIBOR L) plus a spread X.

At final maturity T = Tb, “A” pays KST to “B” (or gives back the amount K of stocks)

and receives a payment KS0.

The price can be derived using risk neutral valuation, and the (fair) spread is chosen in

order to obtain a contract whose value at inception is zero.
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Counterparty Risk in Equity Return Swap (ERS)

Time 0: no flows, or

A −→ KSC
0 cash −→ B

A←− K equity of C←− B

Time Ti:

A −→ equity dividends of C −→ B

A←− Libor + Spread←− B

Time Tb:

A −→ K equity of C −→ B

A←− KSC
0 cash←− B
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Counterparty Risk in Equity Return Swap (ERS)

We assume the underlying “C” to be default-free, or to have a much stronger credit quality

than counterparty “B” (for example an equity index).

It can be proved that if “B” were default-free itself, the fair spread would be zero. It is

then precisely counterparty risk that makes the spread non-zero.

If early default of “B” occurs at time τ = τB, the following happens.

Before τ payments go through normally, as before.

If τ ≤ T , compute the net present value (NPV) of the position at time τ .

If NPV is negative to us (“A”), then at τ we fully pay its opposite to “B”. Instead, if it

is positive to us (“A”), only a recovery fraction REC of that NPV is received.

It is clear that counterparty risk is bad to us (“A”) when the market is good (large NPV).
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Counterparty Risk in Equity Return Swap (ERS)

Price of the ERS to us (“A”) results to be:

ERS
D
0 = NPV(0, Tb)− LGDE0

[

1{τ≤Tb}D(0, τ) (NPV(τ, Tb))
+
]

where

NPV(t, Tb) = Et

{

− kNPV
t,Tb
dividends(t) + KS0

b∑

i=β(t)

D(t, Ti)αi (L(Ti−1, Ti) + X)

+D(t, Tb)
(
KS0 −KSTb

)
}

We denoted by NPVs,t
dividends(u) the net present value of the dividend flows between s and

t computed in u, αi is the year fraction between Ti−1 and Ti, and β(t) is such that

t ∈ [Tβ(t)−1, Tβ(t)), i.e. Tβ(t) is the first date among the Ti’s that follows t.
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Counterparty Risk in Equity Return Swap (ERS)

A key variable for the valuation is the correlation ρ between counterparty VB and

underlying equity SC.

Recall: Firm Value of the counterparty “B” (AT1P or SBVT) calibrated to CDS quotes of

“B” and underlying equity of name “C” (Black Scholes) with σC = 20%, q = 8% and

r given by the zero curve:

dVB(t) = VB(t)(r(t)− k(t))dt + VB(t)σB(t)dWB(t)

dSC(t) = SC(t)(r(t)− q(t))dt + SC(t)σC(t)dWC(t)

Correlation : dWBdWC = ρB,Cdt

ρB,C can be estimated as historical correlation between daily returns of equities “B” and

“C” or a view on it can be expressed.

We can find the value of X that makes the contract fair by iterating the MC simulation

until the payoff value is sufficiently small.
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Counterparty Risk in ERS: Results

Evaluation date: September 16, 2009.

ERS data: Tenor=5y, freq=semiannual, REC = 40%.

Underlying equity data: S0 = 20, q = 0.8%, σC = 20%.

Counterparty CDS spread ERS spread

T̂i R̂BID
i R̂ASK

i
1y 25 31
3y 34 39
5y 42 47

7y 46 51
10y 50 55

ρB,C spread (AT1P) spread (SBTV)

-1.0 0.0∗ 0.0∗
-0.2 3.0 3.6
0.0 5.5 5.5

0.5 14.7 11.4
1.0 24.9 17.9

Notice that AT1P and SBTV returns very similar results, even if not identical: this can

be due to the fact that the two models are calibrated exactly to CDS quotes, but they

do not necessarily return the same term structure of default probability, especially

for dates not corresponding to CDS pillar tenors. Anyway, the differences between the two

spreads are comparable with the Bid-Ask spread of CDS premia.

If we compute the fair spread with the intensity model, we find X = 5.5bps, coherent

with the hypothesis of independence (ρ = 0) in both the AT1P and SBTV models.
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SBTV Structural Model: Multiname

Consider two firms 1 and 2:

dV1(t) = V1(t)(r(t)− k1(t))dt + V1(t)σ1(t)dW1(t)

dV2(t) = V2(t)(r(t)− k2(t))dt + V2(t)σ2(t)dW2(t)

We take two scenarios on the initial level of the barrier

H1 =

{
Hh

1 with prob ph
1

H l
1 with prob pl

1

H2 =

{
Hh

2 with prob ph
2

H l
2 with prob pl

2

There are two elements that control the default correlation of the two names.

• The correlation between the two brownian motions driving the firm asset’s values:

ρ = corr[dW1(t), dW2(t)]; this naturally represents the amount of default dependency

coming from smoothly varying common variables (for example, the so-called cyclical

default correlation due to macroeconomic variables, although it can include some

company specific links).

• The joint distribution of (H1,H2) that naturally represents the amount of default

dependency coming from “contagion” effects specific of the two names.

Recent Advancements in the Theory and Practice of Credit Derivatives. Nice, Sep 28-30, 2009. 44



Marco Tarenghi, Banca Leonardo Structural Models Calibration

SBTV Structural Model: Multiname

Three interesting scenarios on the barriers:

• Strong links: phh and pll very high, phl and plh very low (positive dependence);

• Scarcely related firms pxy = px
1p

y
2 (independence);

• Competitors: phh and pll very low, phl and plh very high (negative dependence).

where pxy = Prob (H1 = Hx
1 ,H2 = Hy

2 ) (x, y = h, l).

They match with the correlation cases: ρ ≈ 1, ρ ≈ 0, ρ ≈ −1. It is important to

notice that companies can have strong equity correlation while not experiencing contagion

in case of default, and also the other way around. It becomes interesting to see which

level of flexibility the models gives us in this cases, and what is the effect of the different

assumptions.

A technical issue to consider is the design of the multivariate random barrier.

FH1,H2
(h1, h2) = Prob (H1 ≤ h1,H2 ≤ h2)
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SBTV Structural Model: Multiname

FH1,H2
(h1, h2) h2 < H l

2 H l
2 ≤ h2 < Hh

2 h2 ≥ Hh
2

h1 < H l
1 0 0 0

H l
1 ≤ h1 < Hh

1 0 pll pl
1

h1 ≥ Hh
1 0 pl

2 1

So we can control the distribution just by controlling pll. We have to check the constraints:

1) Joint distribution can’t be higher than marginals: pll ≤ min
(
pl
1, p

l
2

)
;

2) All resulting probabilities must be non-negative, which means:

- phl = pl
2 − pll ≥ 0 (already guaranteed);

- plh = pl
1 − pll ≥ 0 (already guaranteed);

- phh = 1− pl
1 − pl

2 + pll ≥ 0;

All the constraints summarize in:

max
(

p
l
1 + p

l
2 − 1, 0

)

≤ p
ll ≤ min

(

p
l
1, p

l
2

)
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SBTV Structural Model: Multiname

This also shows ho to design the distribution to have the desired features:

Maximum dependence −→ pll = min
(
pl
1, p

l
2

)

Independence −→ pll = pl
1 ∗ pl

2

Minimum dependence −→ pll = max
(
pl
1 + pl

2 − 1, 0
)

In the following we see the result on the pricing of a multiname credit derivative (First

To Default) considering different pairs of firms and assessing all 9 pivot configurations in

terms of asset value correlation ρ = corr [dW1(t), dW2(t)] and in terms of joint barrier

distribution Prob (H1 ≤ h1,H2 ≤ h2).

First To Default: Credit derivative protecting against the first default in a basket of credit

entities. It works like a CDS: protection LGD is paid at τ = min (τ1, . . . τn) (in our case

n = 2).
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SBTV Structural Model: Multiname

pos dep bar
no dep bar

neg dep bar

neg rho

no rho

pos rho

0

0.1

0.2

0.3

0.4

0.5

0.6

Two Risky Firms

Here we consider two risky firms: their default barrier is certainly high, there is some

uncertainty if it is so high to lead to close default or a bit lower. We are in a relatively

high volatility context. The value of protection (risk of default of at least one name) grows

when the dependency gets lower, either that we model dependency through smooth linear

correlation of asset values or more abrupt scenario dependency. It is clear, however, that

for this kind of firm the asset volatility matter most, so linear correlation has a dominant

effect.
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SBTV Structural Model: Multiname

pos dep bar
no dep bar

neg dep bar

neg rho

no rho

pos rho

0

0.1

0.2

0.3

0.4

0.5

0.6

Two Higher Grade Firms

We move to two higher grade firms, generally considered reliable but charged with short

term credit spreads due to some uncertainty about their actual conditions. What matters

most is the dependency or anti-dependency of the relative liability scenarios.
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SBTV Structural Model: Multiname

pos dep bar
no dep bar

neg dep bar

neg rho

no rho

pos rho

0

0.1

0.2

0.3

0.4

0.5

0.6

One Higher Grade and One Risky

When we take two very different firms, we see that this kind of dependency seem to have

less importance. When two companies are so different they give little control on default

correlation.
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Conclusions

We introduced basic structural models: Merton and Black Cox. We explained the different

philosophy with respect to intensity models.

We illustrated how our tractable first passage structural model AT1P is calibrated exactly

to CDS data and showed a case study based on market data when the credit quality of the

underlying name (Lehman) is deteriorating.

We extended the AT1P structural model using random parameters for the safety covenants

barrier, leading to the SBTV model, and studied what changes in the calibration and the

opportunities given by the new models.

We shortly analyzed the application of the two models to counterparty risk pricing in an

Equity Return Swap.

We hinted at possible extensions to the multiname case.
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