The algebra of symmetric tensors on smooth projective varieties

Arnaud Beauville*1 \& Jie Liu ${ }^{2}$
${ }^{1}$ CNRS, Laboratoire J.-A. Dieudonné, Université Côte d’Azur, F-06108 Nice, France; ${ }^{2}$ Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Email: arnaud.beauville@unice.fr, jliu@amss.ac.cn

Received November 4, 2023; accepted March 13, 2024; published online March 26, 2024

Abstract

In this paper, we discuss the \mathbb{C}-algebra $H^{0}\left(X, \mathrm{~S}^{\bullet} T_{X}\right)$ for a smooth complex projective variety X. We compute it in some simple examples, and give a sharp bound on its Krull dimension. Then we propose a conjectural characterization of non-uniruled projective manifolds with pseudo-effective tangent bundle.

Keywords symmetric tensors, smooth projective varieties, pseudo-effective tangent bundle
MSC(2020) 14J40, 14J60

Citation: Beauville A, Liu J. The algebra of symmetric tensors on smooth projective varieties. Sci China Math, 2024, 67, https://doi.org/10.1007/s11425-023-2284-4

1 Introduction

Let X be a smooth complex projective variety. We denote by $T^{*} X$ its cotangent bundle, and by $\mathbb{P} T^{*} X$ its projectivization. In this paper, we are interested in the graded \mathbb{C}-algebra

$$
S(X):=\bigoplus_{p \geqslant 0} H^{0}\left(X, \mathrm{~S}^{p} T_{X}\right)=\mathcal{O}\left(T^{*} X\right)=\bigoplus_{p \geqslant 0} H^{0}\left(\mathbb{P} T^{*} X, \mathcal{O}_{\mathbb{P} T^{*} X}(p)\right)
$$

$\left(\mathcal{O}\left(T^{*} X\right)\right.$ is the algebra of regular functions on $T^{*} X$, with the grading defined by the linear action of \mathbb{C}^{*}.)

Despite its simple definition, this is an intriguing object, which is usually quite complicated, even for a variety as simple as the quadric (see Proposition 2.4 below). While the algebra $\bigoplus_{p \geqslant 0} H^{0}\left(X, \mathrm{~S}^{p} \Omega_{X}^{1}\right)$ has been extensively studied, starting with Sakai's work [S], this is not the case of $S(X)$. We describe it in some particular cases in Sections 2 and 3. Then we give a sharp bound on the Krull dimension of $S(X)$ in Section 4. Finally in Section 5, we propose a conjectural characterization of non-uniruled projective manifolds with pseudo-effective tangent bundle, which holds in dimension $\leqslant 5$.

[^0]We would like to dedicate this paper to the memory of Gang Xiao. Gang was (informally) a student of the first author in Orsay at the beginning of the 1980's, then later his colleague and friend in Nice, till his untimely death in 2014.

Notations. We work over the complex numbers. If X is a variety endowed with an action of \mathbb{C}^{*}, we denote by $\mathcal{O}(X)$ the \mathbb{C}-algebra of regular functions on X, with the grading defined by the \mathbb{C}^{*}-action. By a vector space we mean a complex, finite-dimensional vector space.

2 Some examples

2.1 Abelian varieties

We start with a trivial case: if X is an abelian variety of dimension n, we have $T_{X} \cong \mathcal{O}_{X}^{n}$, hence $S(X)$ is a polynomial algebra in n variables.

2.2 Projective space

Let V be a vector space. We let $I \in V \otimes V^{*}$ be the image of the identity by the isomorphism $\operatorname{End}(V) \xrightarrow{\sim} V \otimes V^{*}$.
Proposition 2.1. The graded algebra $S(\mathbb{P}(V))$ is isomorphic to the quotient of $\bigoplus_{d \geqslant 0}\left(\mathrm{~S}^{d} V \otimes \mathrm{~S}^{d} V^{*}\right)$ by the ideal generated by I.
Proof. The projective cotangent bundle $\mathbb{P} T_{\mathbb{P}(V)}^{*}$ can be identified with the incidence hypersurface $Z \subset$ $\mathbb{P}(V) \times \mathbb{P}\left(V^{*}\right)$ consisting of pairs (x, H) with $x \in H$; the tautological line bundle $\mathcal{O}_{Z}(1)$ is induced by $\mathcal{O}_{\mathbb{P}(V)}(1) \boxtimes \mathcal{O}_{\mathbb{P}\left(V^{*}\right)}(1)$. The proposition follows from the exact sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}(V)}(d-1) \boxtimes \mathcal{O}_{\mathbb{P}\left(V^{*}\right)}(d-1) \xrightarrow{\times I} \mathcal{O}_{\mathbb{P}(V)}(d) \boxtimes \mathcal{O}_{\mathbb{P}\left(V^{*}\right)}(d) \rightarrow \mathcal{O}_{Z}(d) \rightarrow 0
$$

2.3 Rational homogeneous manifolds

In this subsection, we use some general facts about nilpotent orbits, which can be found for example in [Fu].

Let $X=G / P$, where G is a reductive algebraic group and P a parabolic subgroup. We denote by \mathfrak{g} and \mathfrak{p} their Lie algebras, and by \mathfrak{n} the nilradical of \mathfrak{p}. The Killing form of \mathfrak{g} provides an isomorphism of G-modules $\mathfrak{n} \xrightarrow{\sim}(\mathfrak{g} / \mathfrak{p})^{*}$; using this we identify the cotangent bundle $T^{*}(G / P)$ to the homogeneous bundle $G \times{ }^{P} \mathfrak{n}$. Associating to a pair (g, N) in $G \times \mathfrak{n}$, the element $\operatorname{Ad}(g) \cdot N$ of \mathfrak{g} defines a generically finite, \mathbb{C}^{*}-equivariant map $\pi: T^{*}(G / P) \rightarrow \mathfrak{g}$, whose image \mathscr{N} is the closure of a nilpotent orbit.

We will consider the case where the induced map $\bar{\pi}: T^{*}(G / P) \rightarrow \mathscr{N}$ is birational. In this case $\bar{\pi}$ is a resolution of the normalization $\tilde{\mathscr{N}}$ of \mathscr{N}, and we have $S(X)=\mathcal{O}(\tilde{\mathscr{N}})$. For $G=\operatorname{GL}(n)$ all parabolic subgroups have this property, and \mathscr{N} is normal, so $S(X)=\mathcal{O}(\mathscr{N})$. In the other classical cases there is a precise description of the parabolic subgroups for which $\bar{\pi}$ is birational [Fu, 3.3]; we will content ourselves with the example of quadrics.

2.4 Flag varieties, Grassmannians

Let V be a vector space, and let $(0)=V_{0} \subset V_{1} \subset \cdots \subset V_{s+1}=V$ be a (partial) flag in V. The stabilizer P of this flag is a parabolic subgroup of $\mathrm{GL}(V)$, and all parabolics are obtained in this way. The variety G / P is the variety of flags $(0)=F_{0} \subset F_{1} \subset \cdots \subset F_{s+1}=V$ with $\operatorname{dim} F_{i}=\operatorname{dim} V_{i}$.

The Lie algebra \mathfrak{p} is the stabilizer of $\left(V_{i}\right)$ in $\operatorname{End}(V)$, and its nilradical \mathfrak{n} is the subspace of $u \in \operatorname{End}(V)$ satisfying $u\left(V_{i+1}\right) \subset V_{i}$ for $0 \leqslant i \leqslant s$. Therefore \mathscr{N} is the subvariety of endomorphisms $u \in \operatorname{End}(V)$ for which there exists a flag $\left(F_{i}\right)$ in G / P with $u\left(F_{i+1}\right) \subset F_{i}$ for $0 \leqslant i \leqslant s$.

Let us spell out this in the case of the Grassmannian $\mathbb{G}:=\mathbb{G}(r, V)$ of r-dimensional subspaces of V. We put $n:=\operatorname{dim} V$.
Proposition 2.2. $\quad S(\mathbb{G}(r, V))=\mathcal{O}(\mathscr{N})$, where $\mathscr{N} \subset \operatorname{End}(V)$ is the subvariety of endomorphisms u satisfying $u^{2}=0$ and $\operatorname{rk} u \leqslant \min \{r, n-r\}$.
Proof. Since $\mathbb{G}(r, V) \cong \mathbb{G}(n-r, V)$, we can assume $r \leqslant n / 2$. By the previous discussion, \mathscr{N} consists of endomorphisms u for which there exists an r-dimensional subspace $W \subset V$ with $u(V) \subset W$ and $u(W)=0$, i.e., $\operatorname{Im} u \subset W \subset \operatorname{Ker} u$. This implies $u^{2}=0$ and $\mathrm{rk} u \leqslant r$; conversely, if this is satisfied, we have $\operatorname{Im} u \subset \operatorname{Ker} u$ and $\operatorname{dim} \operatorname{Ker} u=n-\mathrm{rk} u \geqslant n-r \geqslant r$, so any r-dimensional subspace W with $\operatorname{Im} u \subset W \subset \operatorname{Ker} u$ does the job.
Remark 2.3. (1) Taking $r=1$ we recover Proposition 2.1.
(2) If $r=\left\lfloor\frac{n}{2}\right\rfloor$, the condition $u^{2}=0$ implies $\mathrm{rk} u \leqslant r$, so \mathscr{N} is simply the variety of square zero endomorphisms of V.

2.5 Quadrics

Let V be a vector space, and let q be a non-degenerate quadratic form on V, defining a quadric $Q:=V(q)$ in $\mathbb{P}(V)$.
Proposition 2.4. $S(Q)$ is isomorphic to the quotient of the homogeneous coordinate ring of $\mathbb{G}(2, V) \subset$ $\mathbb{P}\left(\bigwedge^{2} V\right)$ by the ideal generated by $\wedge^{2} q$.
Proof. Let ℓ be an isotropic line in V and let P be the stabilizer of ℓ, so that $Q=\mathrm{O}(V) / P$. The Lie algebra $\mathfrak{o}(V)$ consists of endomorphisms of V which are skew-symmetric (with respect to q), and \mathfrak{p} is the stabilizer of ℓ in $\mathfrak{o}(V)$.

The nilradical \mathfrak{n} of \mathfrak{p} consists of skew-symmetric endomorphisms u such that $u\left(\ell^{\perp}\right) \subset \ell$ and $u(\ell)=0$. Such a map is of the form

$$
\begin{equation*}
x \mapsto q(w, x) v-q(v, x) w, \quad \text { where } v \in \ell \text { and } w \in \ell^{\perp} \tag{2.1}
\end{equation*}
$$

Varying ℓ, we see that \mathscr{N} consists of the maps of the form (2.1) such that the restriction of q to $\langle v, w\rangle$ has rank $\leqslant 1$. Such maps correspond bijectively to decomposable bivectors $v \wedge w \in \Lambda^{2} V$, and the condition on q can be written as $\wedge^{2} q(v \wedge w)=0$. This implies the proposition.

2.6 Intersection of two quadrics

The following result is proved in [BEHLV]:
Proposition 2.5. Let $X \subset \mathbb{P}^{n+2}$ be a smooth complete intersection of two quadrics, with $n \geqslant 2$. Then $S(X)$ is a polynomial algebra in n variables of degree 2.

It is somewhat surprising that the answer is much simpler in this case than that for a single quadric.

2.7 Completely integrable systems

Let V be a graded vector space, endowed with the associated \mathbb{C}^{*}-action. Suppose that we have a \mathbb{C}^{*}-equivariant morphism $\Phi: T^{*} X \rightarrow V$ whose general fiber is of the form $Y \backslash Z$, where Y is a complete variety and Z a closed subvariety of codimension $\geqslant 2$. Then the functions on $T^{*} X$ are constant on the fibers of Φ, hence the homomorphism $\Phi^{*}: \mathcal{O}(V)=\mathrm{S}^{\bullet} V^{*} \rightarrow \mathcal{O}\left(T^{*} X\right)=S(X)$ is an isomorphism of graded algebras.

A famous example of this situation is given by the Hitchin fibration [Hi]. Let C be a curve of genus $g \geqslant 2$. We fix coprime integers $r, d \geqslant 1$, and consider the moduli space \mathscr{M} of stable vector bundles on C of rank r and degree d. It is a smooth projective variety. By deformation theory the tangent space $T_{E}(\mathscr{M})$ at a point E of \mathscr{M} identifies with $H^{1}(C, \mathscr{E} n d(E))$; by Serre duality, its dual $T_{E}^{*} \mathscr{M}$ identifies with $\operatorname{Hom}\left(E, E \otimes K_{C}\right)$. Let V be the graded vector space $\bigoplus_{i=1}^{r} H^{0}\left(C, K_{C}^{i}\right)\left(\right.$ with $\left.\operatorname{deg} H^{0}\left(C, K_{C}^{i}\right)=i\right)$. For $u \in \operatorname{Hom}\left(E, E \otimes K_{C}\right)$, we have $\operatorname{Tr} \wedge^{i} u \in H^{0}\left(C, K_{C}^{i}\right)$. Associating to u the vector $\operatorname{Tr} u+\cdots+\operatorname{Tr} \wedge^{r} u$ gives a \mathbb{C}^{*}-equivariant map $\Phi: T^{*} \mathscr{M} \rightarrow V$.

Proposition 2.6. The homomorphism $\Phi^{*}: \mathcal{O}(V)=\mathrm{S}^{\bullet} V^{*} \rightarrow \mathcal{O}\left(T^{*} \mathscr{M}\right)=S(\mathscr{M})$ is an isomorphism. Proof. $\quad T^{*} \mathscr{M}$ admits an open embedding into the moduli space \mathscr{H} of stable Higgs bundles (of rank r and degree d), and Φ extends to a proper map $\bar{\Phi}: \mathscr{H} \rightarrow V[\mathrm{Hi}]$. The codimension of $\mathscr{H} \backslash T^{*} \mathscr{M}$ is $\geqslant 2$ [Fa, Theorem II.6], hence $\operatorname{codim} \bar{\Phi}^{-1}(v) \backslash \Phi^{-1}(v) \geqslant 2$ for v general in V. By the previous remark this implies the result.

There are a number of variations on this theme. First of all, one can fix a line bundle L of degree d on X and consider the subspace \mathscr{M}_{L} of \mathscr{M} parameterizing the vector bundles E with $\operatorname{det} E=L$; then Φ maps \mathscr{M}_{L} onto the graded subspace $V_{0}:=\bigoplus_{i=2}^{r} H^{0}\left(C, K_{C}^{i}\right)$ of V, and we get as before an isomorphism of $S\left(\mathscr{M}_{L}\right)$ with $S \cdot V_{0}^{*}$. Note that in the case $g=r=2 \mathscr{M}_{L}$ is a complete intersection of two quadrics in \mathbb{P}^{5}, so we recover the case $n=3$ of Proposition 2.5.

We can also consider the moduli space $\mathscr{M}_{\text {par }}$ of stable parabolic vector bundles on C of rank r, degree d and weights α, with a parabolic structure along a divisor $D=p_{1}+\cdots+p_{s}$; we refer for example to [BGL] for the precise definitions. For generic weights $\mathscr{M}_{\text {par }}$ is smooth and projective; the Hitchin map $\Phi: T^{*} \mathscr{M}_{\text {par }} \rightarrow V_{\text {par }}$ takes its values in the vector space $V_{\text {par }}:=\bigoplus_{i=1}^{r} H^{0}\left(C, K_{C}((i-1) D)\right)$. It extends to a proper map from the moduli space $\mathscr{H}_{\text {par }}$ of parabolic Higgs bundle to $V_{\text {par }}$, and $\mathscr{M}_{\text {par }} \backslash T^{*} \mathscr{M}_{\text {par }}$ has codimension $\geqslant 2$ provided $g \geqslant 4$, or $g=3$ and $r \geqslant 3$, or $g=2$ and $r \geqslant 5$ [BGL, Proposition 5.10]. If this holds, we get as before an isomorphism $\mathrm{S}^{\bullet} V_{\mathrm{par}}^{*} \xrightarrow{\sim} S\left(\mathscr{M}_{\mathrm{par}}\right)$.

2.8 An example: Ruled surfaces

Contrary to what the previous examples might suggest, $S(X)$ is not invariant under deformation of X; a typical example is provided by ruled surfaces. Let C be a curve of genus $\geqslant 2$, and E a stable rank 2 vector bundle on C with trivial determinant ${ }^{1)}$. We put $X=\mathbb{P}_{C}(E)$.
Proposition 2.7. For general E we have $S(X)=\mathbb{C}$.
Proof. Denote by $p: X \rightarrow C$ the structure map and by $\mathcal{O}_{X}(1)$ the tautological line bundle. The exact sequence

$$
0 \rightarrow \mathcal{O}_{X}(2) \rightarrow T_{X} \rightarrow p^{*} T_{C} \rightarrow 0
$$

gives rise to exact sequences

$$
\begin{equation*}
0 \rightarrow \mathcal{O}_{X}(2 p) \rightarrow \mathrm{S}^{p} T_{X} \rightarrow \mathrm{~S}^{p-1} T_{X} \otimes p^{*} T_{C} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

We claim that $H^{0}\left(X, \mathrm{~S}^{p-1} T_{X} \otimes p^{*} T_{C}\right)=0$. Indeed we get from (2.2) exact sequences

$$
0 \rightarrow \mathcal{O}_{X}(2 q) \otimes p^{*} T_{C}^{r} \rightarrow \mathrm{~S}^{q} T_{X} \otimes p^{*} T_{C}^{r} \rightarrow \mathrm{~S}^{q-1} T_{X} \otimes p^{*} T_{C}^{r+1} \rightarrow 0
$$

We have $H^{0}\left(X, \mathcal{O}_{X}(2 q) \otimes p^{*} T_{C}^{r}\right)=H^{0}\left(C, \mathrm{~S}^{2 q} E \otimes T_{C}^{r}\right)=0$ for $r \geqslant 1$, because $\mathrm{S}^{2 q} E$ is semi-stable [Ha, Chapter I, Theorem 10.5] and $\operatorname{deg} T_{C}<0$. Since $H^{0}\left(C, T_{C}^{q+1}\right)=0$, we get by induction $H^{0}\left(X, \mathrm{~S}^{q} T_{X} \otimes\right.$ $\left.p^{*} T_{C}\right)=0$, and hence (2.2) gives isomorphisms

$$
\begin{equation*}
H^{0}\left(X, \mathrm{~S}^{p} T_{X}\right) \cong H^{0}\left(X, \mathcal{O}_{X}(2 p)\right) \cong H^{0}\left(C, \mathrm{~S}^{2 p} E\right) \tag{2.3}
\end{equation*}
$$

Now for general E the bundles $\mathrm{S}^{q} E$ are stable [Ha, loc. cit.], so $H^{0}\left(X, \mathrm{~S}^{p} T_{X}\right)=0$ for $p>0$.
For special bundles E the algebra $S(X)$ can be quite nontrivial. If E is unstable the tangent bundle T_{X} is big [Ki], hence $S(X)$ has Krull dimension 4. This does not hold if E is stable, but one can get interesting algebras of dimension 2. Let V be a 2-dimensional Hermitian space, and let G be a finite subgroup of $\mathrm{SU}(V)$, acting irreducibly on V. Recall from [Kl] that G is the pull-back by the covering map $\mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ of a group \bar{G} isomorphic to the dihedral group D_{n} or to $\mathfrak{A}_{4}, \mathfrak{S}_{4}$ or \mathfrak{A}_{5}.

Given an étale Galois covering $\pi: \tilde{C} \rightarrow C$ with group G, the vector bundle $E_{\pi}:=\tilde{C} \times{ }^{G} V$ on C is stable, of rank 2 , with trivial determinant. The space $H^{0}\left(C, \mathrm{~S}^{p} E_{\pi}\right)$ is canonically isomorphic to the G invariant subspace of $\mathrm{S}^{p} V$. Note that this is zero if p is odd, since G contains the element -1_{V}. Therefore

[^1]it follows from (2.3) that $S(X)$ is isomorphic to the graded algebra of invariants $\left(S^{\bullet} V\right)^{G}$, the algebra of regular functions on the quotient variety V / G.

The determination of $\left(S^{\bullet} V\right)^{G}$ goes back to Klein [Kl, Chapter II]. It is generated by 3 homogeneous elements x, y, z, subject to one weighted homogeneous relation $F(x, y, z)=0$. Putting $\mathbf{d}=(\operatorname{deg} x, \operatorname{deg} y$, $\operatorname{deg} z)$, we have:

- For $\bar{G}=D_{n}, \mathbf{d}=(2 n+2,2 n, 4), F=x^{2}+y^{2} z+z^{n+1}$.
- For $\bar{G}=\mathfrak{A}_{4}, \mathbf{d}=(6,4,4), F=x^{2}+y^{3}+z^{3}$.
- For $\bar{G}=\mathfrak{S}_{4}, \mathbf{d}=(12,8,6), F=x^{2}+y^{3}+z^{4}$.
- For $\bar{G}=\mathfrak{A}_{5}, \mathbf{d}=(30,20,12), F=x^{2}+y^{3}+z^{5}$.

3 Cases with $S(X)=\mathbb{C}$

3.1 Varieties with $c_{1}(X)=0$

The following result, proved in [Ko], is a direct consequence of Yau's theorem:
Proposition 3.1. Let X be a compact Kähler variety with $c_{1}(X)=0$ in $H^{2}(X, \mathbb{Q})$, and $\pi_{1}(X)$ finite. Then $S(X)=\mathbb{C}$.

With no assumption on $\pi_{1}(X)$, we know that X is the quotient of a product $A \times Y$, where A is a complex torus and Y is simply connected, by a finite group G acting freely [B2]. It follows that $S(X)$ is isomorphic to the invariant subring $\left(\mathrm{S}^{\bullet} T_{0}(A)\right)^{G}$.

3.2 Varieties of general type

Proposition 3.2. Let X be a variety of general type. Then $S(X)=\mathbb{C}$.
This is a consequence of the stronger result that T_{X} is not pseudo-effective [HP2, Proposition 4.11].

3.3 Hypersurfaces

The following result is proved in [HLS]:
Proposition 3.3. Let $X \subset \mathbb{P}^{n+1}$ be a smooth hypersurface of degree $d \geqslant 3$ and dimension $\geqslant 2$. Then $S(X)=\mathbb{C}$.

In fact, the authors [HLS] proved the stronger result $H^{0}\left(X, \mathrm{~S}^{p}\left(T_{X}(d-3)\right)\right)=0$, and also that T_{X} is not pseudo-effective.

4 The Krull dimension of $\boldsymbol{S}(\boldsymbol{X})$

A complete description of the ring $S(X)$ is in general intractable, but we can still ask for some of its properties, for example, its Krull dimension. When $S(X) \neq \mathbb{C}$, it is equal to $1+\kappa\left(\mathcal{O}_{\mathbb{P} T^{*} X}(1)\right)$, where κ denotes the Iitaka dimension (see [C, Lemma 7.2]). We have $0 \leqslant \operatorname{dim} S(X) \leqslant 2 \operatorname{dim} X$, and all cases can occur. In particular,

$$
\operatorname{dim} S(X)=2 \operatorname{dim} X \Longleftrightarrow \mathcal{O}_{\mathbb{P} T^{*} X}(1) \text { big } \Longleftrightarrow T_{X} \text { big. }
$$

This property holds for toric varieties [Hs], and also for all rational homogeneous varieties [GW, Corollary 4.4]. The paper [Li] contains a number of other examples of varieties with a group action whose tangent bundle is big.

Though the most interesting cases occur when the Kodaira dimension $\kappa(X)$ is $-\infty$, one may ask what can be said when $\kappa(X) \geqslant 0$. The condition $S(X) \neq \mathbb{C}$, or the weaker condition that T_{X} is pseudoeffective, imposes strong restrictions on X; see [HP2, Proposition 4.11]. The following bound is the main result of this section:

Proposition 4.1. $\quad \operatorname{dim} S(X) \leqslant \operatorname{dim} X-\kappa(X)$. The equality holds if and only if X admits a finite étale covering of the form $A \times Y$, where A is an abelian variety and Y a variety of general type.

It follows in particular that $\operatorname{dim} S(X)>\operatorname{dim} X$ implies $\kappa(X)=-\infty$.
Let us first show that the equality holds when there exists an étale covering $A \times Y \rightarrow X$ with A abelian and Y of general type. This follows from Subsection 2.1, Proposition 3.2, and the following lemma:
Lemma 4.2. Let X and Y be smooth projective varieties.
(1) We have $S(X \times Y) \cong S(X) \otimes S(Y)$.
(2) If $\pi: X \rightarrow Y$ is an étale morphism, $\operatorname{dim} S(X)=\operatorname{dim} S(Y)$ and $\kappa(X)=\kappa(Y)$.

Proof. (1) Let p_{X} and p_{Y} be the projections of $X \times Y$ onto X and Y, respectively. We have $T_{X \times Y}=$ $p_{X}^{*} T_{X} \oplus p_{Y}^{*} T_{Y}$, hence $S^{\bullet} T_{X \times Y}=p_{X}^{*} \mathrm{~S}^{\bullet} T_{X} \otimes p_{Y}^{*} \mathrm{~S}^{\bullet} T_{Y}$. The result follows from the Künneth formula.
(2) π induces a finite étale morphism $T^{*} X \rightarrow T^{*} Y$, hence $S(X)=\mathcal{O}\left(T^{*} X\right)$ is a finite algebra over $S(Y)$, thus $\operatorname{dim} S(X)=\operatorname{dim} S(Y)$. The equality of the Kodaira dimensions is proved in [Ue, Theorem 5.13].

For the rest of the proof, we will need some preliminary results.

4.1 Slope and positivity of vector bundles

We fix an ample divisor class H on X. We will say that a vector bundle is stable if it is slope-stable with respect to H - the same for semi-stability and polystability.

Let \mathscr{E} be a torsion free coherent sheaf of rank r on X. Recall that the slope $\mu(\mathscr{E})$ of \mathscr{E} is $\frac{1}{r}\left(c_{1}(\mathscr{E}) \cdot H^{n-1}\right)$. We denote by $\mu_{\max }(\mathscr{E})$ the maximum of $\mu(\mathscr{F})$ for $\mathscr{F} \subseteq \mathscr{E}, \mathscr{F} \neq 0$.
Lemma 4.3. Let E and F be two vector bundles on X.
(1) $\mu_{\max }(E \otimes F)=\mu_{\max }(E)+\mu_{\max }(F)$.
(2) $\mu_{\max }\left(\mathrm{S}^{p} E\right)=p \mu_{\max }(E)$.

In particular, if E and F are semi-stable, then so are $E \otimes F$ and $\mathrm{S}^{q} E$ for any $q \geqslant 1$.
Proof. (1) is proved in [CP, Corollary 5.5].
(2) Let \mathscr{F} be a subsheaf of E with $\mu(\mathscr{F})=\mu_{\max }(E)$. Then $\left(\mathrm{S}^{p} \mathscr{F}\right)^{* *}$ is a subsheaf of $\mathrm{S}^{p} E$, hence $\mu_{\max }\left(\mathrm{S}^{p} E\right) \geqslant \mu\left(\left(\mathrm{S}^{p} \mathscr{F}\right)^{* *}\right) \geqslant p \mu(\mathscr{F})=p \mu_{\max }(E)$. On the other hand, since $\mathrm{S}^{p} E$ is a subsheaf of $E^{\otimes p}$, we have $\mu_{\max }\left(\mathrm{S}^{p} E\right) \leqslant \mu_{\max }\left(E^{\otimes p}\right)=p \mu_{\max }(E)$ by (1), hence (2) holds.

4.2 Symmetric algebra of vector bundles

Let E be a vector bundle of rank r on X. We will denote by $S(E)$ the graded algebra $H^{0}(X, \mathrm{~S} \bullet E)$.
Lemma 4.4. (1) Assume that E is polystable, and $\mu(E)=0$. Then $\operatorname{dim} S(E) \leqslant r$.
(2) Assume $E=F \oplus G$, where $\mu_{\max }(F) \leqslant 0$ and $\mu_{\max }(G)<0$. Then $S(E)=S(F)$.

Proof. (1) If E is stable and $h^{0}(E) \neq 0$, there is an injective homomorphism $\mathcal{O}_{X} \rightarrow E$, which must be an isomorphism; hence $h^{0}(E) \leqslant 1$. It follows that $h^{0}(E) \leqslant r$ if E is polystable. Now $\mathrm{S}^{q} E$ is also polystable [HL, Theorem 3.2.11], so $h^{0}\left(\mathrm{~S}^{q} E\right) \leqslant \operatorname{rk} \mathrm{S}^{q} E=\binom{q+r-1}{r-1}$, hence $\kappa\left(\mathcal{O}_{\mathbb{P}(E)}(1)\right) \leqslant r-1$ (see, e.g., [La, Corollary 2.1.38]) and $\operatorname{dim} S(E) \leqslant r$.
(2) By Lemma 4.3 we have, for $p, q \in \mathbb{N}, q>0$:

$$
\mu_{\max }\left(\mathrm{S}^{p} F \otimes \mathrm{~S}^{q} G\right)=p \mu_{\max }(F)+q \mu_{\max }(G)<0, \quad \text { hence } H^{0}\left(\mathrm{~S}^{p} F \otimes \mathrm{~S}^{q} G\right)=0
$$

Therefore $H^{0}\left(\mathrm{~S}^{p} E\right)=H^{0}\left(\mathrm{~S}^{p} F\right)$, and $S(E)=S(F)$.

4.3 Proof of Proposition 4.1

Without loss of generality, we may assume $\kappa(X) \geqslant 0$ and $\operatorname{dim} S(X) \geqslant 1$. In particular, the projective manifold X is not uniruled and T_{X} is pseudo-effective. Moreover, since $\operatorname{dim} S(X)$ and $\kappa(X)$ are invariant under finite étale covering (see Lemma 4.2), we may replace X by any finite étale covering.

Proposition 4.11 of [HP2] provides a decomposition

$$
\begin{equation*}
T_{X}=F \oplus G \tag{4.1}
\end{equation*}
$$

where F and G are integrable subbundles, $c_{1}(F)=0$, and the restriction of G^{*} to a general curve complete intersection of hypersurfaces in $|m H|$, for $m \gg 0$, is ample. Since a quotient of an ample bundle is ample, this implies $\mu(\mathscr{F})<0$ for any nonzero subsheaf $\mathscr{F} \subset G$, hence $\mu_{\max }(G)<0$. Then by Lemma 4.4 the algebra $S(X)$ is isomorphic to $S(F)$. By [PT, Lemma 2.1], F is polystable, hence Lemma 4.4 implies

$$
\operatorname{dim} S(X)=\operatorname{dim} S(F) \leqslant \operatorname{rk} F
$$

By [PT, Proposition 2.6], $\operatorname{det} F$ is a torsion line bundle; passing to a finite étale covering we may assume $\operatorname{det} F=\mathcal{O}_{X}$, so that $\operatorname{det} G^{*} \cong K_{X}$. The natural inclusion $G^{*} \subset \Omega_{X}^{1}$ induces an inclusion $\operatorname{det} G^{*} \subset \Omega_{X}^{k}$, where $k=\operatorname{rk} G$. Then the Bogomolov inequality (see [Bo, Theorem 4]) gives

$$
\kappa(X)=\kappa\left(\operatorname{det} G^{*}\right) \leqslant k=\operatorname{rk} G,
$$

hence

$$
\operatorname{dim} S(X)=\operatorname{dim} S(F) \leqslant \operatorname{rk} F=\operatorname{dim} X-\operatorname{rk} G \leqslant \operatorname{dim} X-\kappa(X)
$$

which proves our bound.
Suppose that the equality holds. Then $\operatorname{dim} S(F)=\operatorname{rk} F$ and $\kappa\left(\operatorname{det} G^{*}\right)=k$. By [Bo, Lemma 12.4], the latter condition implies that there exists a rational map $f: X \rightarrow Y$ to a k-dimensional projective manifold such that $\operatorname{det} G^{*} \subset \Omega_{X}^{k}$ coincides with the saturation of the subsheaf $f^{*} K_{Y} \subset \Omega_{X}^{k}$. This implies that the foliation $F \subset T_{X}$ is induced by f and thus is a regular algebraically integrable foliation. Since $\operatorname{det} F \cong \mathcal{O}_{X}$, by the global version of the Reeb stability theorem [D3, Theorem 8.1], after replacing X by a finite étale covering, we may assume that X is a product $Z \times Y$, with $F=\operatorname{pr}_{Z}^{*} T_{Z}$ and $G \cong \operatorname{pr}_{Y}^{*} T_{Y}$. In particular, we obtain

$$
\operatorname{dim}(Y)=\kappa\left(X, \operatorname{det} G^{*}\right)=\kappa(Y)
$$

hence Y is of general type.
Finally, we use the first condition $\operatorname{dim} S(F)=\operatorname{rk} F$. Since $S(F)$ is canonically isomorphic to $S(Z)$, we get $\operatorname{dim} S(Z)=\operatorname{dim} Z$. Since $c_{1}(F)=0$, we have $c_{1}(Z)=0$, hence Z admits a finite étale covering of the form $A \times T$, where A is an abelian variety and T a simply connected smooth projective variety with $c_{1}(T)=0$ [B1]. By Proposition 3.1 and Lemma 4.2 we have $S(Z) \cong S(A)$, hence $\operatorname{dim} Z=\operatorname{dim} S(Z)=$ $\operatorname{dim}(A)$ (see Subsection 2.1), so that $X=Z \times Y$ admits a finite étale covering by $A \times Y$.

5 Pseudo-effective tangent bundle

We discuss in this section the structure of non-uniruled projective manifolds X with pseudo-effective tangent bundle.
Lemma 5.1. (1) Let D be a big divisor on X. A vector bundle E is pseudo-effective if and only if for any $c>0$, there exist positive integers i and j such that $i>c j$ and

$$
H^{0}\left(X, S^{i} E \otimes \mathcal{O}_{X}(j D)\right) \neq 0
$$

(2) If E is a pseudo-effective vector bundle, then $\mu_{\max }(E) \geqslant 0$ for any polarization H.
(3) Let $F \rightarrow E$ be an injective map of vector bundles. If F is pseudo-effective, E is pseudo-effective.
(4) Let $f: Y \rightarrow X$ be a surjective morphism between smooth projective varieties, and let E be a vector bundle on X. Then E is pseudo-effective if and only if $f^{*} E$ is pseudo-effective.
(5) Let $X=Y \times Z$ be a product of smooth projective varieties. Then T_{X} is pseudo-effective if and only if one of T_{X} and T_{Z} is pseudo-effective.
Proof. (1) is proved in [HLS, Lemma 2.2].
(2) If $H^{0}\left(X, S^{i} E \otimes \mathcal{O}_{X}(j D)\right) \neq 0$, there is an inclusion $\mathcal{O}_{X}(-j D) \subset S^{i} E$. By Lemma 4.3, we have

$$
\mu_{\max }(E)=\frac{1}{i} \mu_{\max }\left(\mathrm{S}^{i} E\right) \geqslant-\frac{1}{i}\left(j D \cdot H^{n-1}\right)>-\frac{1}{c}\left(D \cdot H^{n-1}\right)
$$

As c is arbitrary, we obtain $\mu_{\max }(E) \geqslant 0$, which proves (2).
(3) follows from (1) and the natural inclusion $\mathrm{S}^{i} F \otimes \mathcal{O}_{X}(j D) \subset \mathrm{S}^{i} E \otimes \mathcal{O}_{X}(j D)$.
(4) Assume first $\operatorname{rk} E=1$. We only need to show that if $f^{*} E$ is pseudo-effective, then so is E itself. Indeed, assume the opposite. By [BDPP, Theorem 0.2], there exists a covering family $\left\{C_{t}\right\}_{t \in T}$ of curves such that $\left(c_{1}(E) \cdot C_{t}\right)<0$. Let $\left\{C_{t^{\prime}}\right\}_{t^{\prime} \in T^{\prime}}$ be a covering family of curves on Y such that a general curve $C_{t^{\prime}}$ is mapped onto some C_{t}. Then we have $\left(c_{1}\left(f^{*} E\right) \cdot C_{t^{\prime}}\right)<0$ by the projection formula, so $f^{*} E$ is not pseudo-effective by [BDPP, Theorem 0.2].

If rk $E>1, f$ induces a surjective morphism $\bar{f}: \mathbb{P}\left(f^{*} E^{*}\right) \rightarrow \mathbb{P}\left(E^{*}\right)$ such that $\bar{f}^{*} \mathcal{O}_{\mathbb{P}\left(E^{*}\right)}(1) \cong$ $\mathcal{O}_{\mathbb{P}\left(f^{*} E^{*}\right)}(1) ;(4)$ follows from the previous result applied to \bar{f}.
(5) By (3) and (4), if T_{Y} or T_{Z} is pseudo-effective, so is T_{X}. Assume that T_{X} is pseudo-effective. Let H_{Y} and H_{Z} be ample line bundles on Y and Z, respectively. Then $H:=H_{Y} \boxtimes H_{Z}$ is ample. By (1), for any $c>0$, there exist positive integers i and j such that $i>2 c j$ and

$$
H^{0}\left(X, \mathrm{~S}^{i} T_{X} \otimes H^{j}\right)=H^{0}\left(X, \mathrm{~S}^{i}\left(T_{Z} \boxtimes T_{Y}\right) \otimes H^{j}\right) \neq 0
$$

By restricting to $Y \times\{z\}$ and $\{y\} \times Z$, for y, z general, it follows that there exist non-negative integers p and q such that $p+q=i, H^{0}\left(Y, \mathrm{~S}^{p} T_{Y} \otimes H_{Y}^{j}\right) \neq 0$ and $H^{0}\left(Z, \mathrm{~S}^{q} T_{Z} \otimes H_{Z}^{j}\right) \neq 0$. Moreover, as $p+q>2 c j$, we also have either $p>c j$ or $q>c j$. Since c is arbitrary and H is ample, it follows from (1) that one of T_{Z} and T_{Y} is pseudo-effective.

Remark 5.2. In general, if the tangent bundle T_{X} of a smooth projective variety X is pseudo-effective and splits into a direct sum $F \oplus G$ of vector bundles, it is not clear to us whether one of F or G is pseudo-effective. Indeed, the splitting of T_{X} in general does not imply the splitting of X itself, as simple abelian varieties or Hilbert modular varieties show. However, it is conjectured by the first author in [B3] that this splitting should come from a splitting of the universal cover of X.

Recall that a rank r vector bundle E on X is called unitary flat if it is associated to an irreducible representation $\pi_{1}(X) \rightarrow \mathrm{U}(r)$.
Conjecture 5.3. Let X be a non-uniruled projective manifold. Then T_{X} is pseudo-effective if and only if there exists a finite étale covering $X^{\prime} \rightarrow X$ such that $T_{X^{\prime}}$ contains a nonzero unitary flat subbundle.
Remark 5.4. (1) A unitary flat vector bundle E is semi-stable, hence nef by the Barton-Kleiman criterion [La, Proposition 6.1.18(i)], hence pseudo-effective. So if $T_{X^{\prime}}$ contains a nonzero unitary flat subbundle, it is pseudo-effective (Lemma 5.1(3)), hence T_{X} is pseudo-effective (Lemma 5.1(4)).
(2) If the tangent bundle T_{X} of a non-uniruled projective X contains a unitary flat subbundle F, then F is actually a regular foliation with $\operatorname{det}(F)$ torsion by [PT, Lemma 2.1 and Proposition 2.6]. We refer the readers to $[\mathrm{PT}]$ for more discussion on the structure of this kind of foliations.
(3) Very recently, Jia, Lee and Zhong have studied in [JLZ] the non-uniruled smooth projective surfaces S with pseudo-effective tangent bundle. They prove that up to a finite étale covering, S is either an abelian surface or a product $E \times C$ of an elliptic curve E and a curve C of genus $\geqslant 2$. This solves Conjecture 5.3 in dimension two.

In higher dimensions, it is asked in [JLZ, Question 1.2] whether the pseudo-effectivity of the tangent bundle of an n-dimensional non-uniruled projective manifold X is equivalent to $c_{n}(X)=0$ and $\widehat{q}(X)>0$, where $\widehat{q}(X)$ is the augmented irregularity of X. The answer is negative in general. For example, let $X=Y \times Z$ be the product of an irreducible simply connected Calabi-Yau variety Y with vanishing top Chern class ${ }^{2}$) and a variety Z of general type with $q(Z)>0$. The tangent bundles of Y and Z are not pseudo-effective (see [HP1, Theorem 1.6] and [HP2, Proposition 4.11]). So Lemma 5.1 says that T_{X} itself is not pseudo-effective.

Because of the decomposition (4.1), Conjecture 5.3 is closely related to the following conjecture proposed by Pereira and Touzet in [PT, Subsection 6.5]:
Conjecture 5.5. Let X be a non-uniruled projective manifold, and let $F \subsetneq T_{X}$ be a regular foliation such that F is stable for some polarization, $c_{1}(F)=0$, and $c_{2}(F) \neq 0$. Then F is algebraically integrable.

[^2]Proposition 5.6. Assume that Conjecture 5.5 holds for $\operatorname{dim}(X) \leqslant n$. Then Conjecture 5.3 holds for $\operatorname{dim}(X) \leqslant n$.
Proof. Assume that T_{X} is pseudo-effective. Let $T_{X}=F \oplus G$ be the decomposition (4.1). Then F is a regular foliation with $c_{1}(F)=0$. By [D1, Theorem 6.9], there exist complex projective manifolds Y and Z, a finite étale cover $\pi: Y \times Z \rightarrow X$, and a regular foliation H on Y with $c_{1}(H)=c_{2}(H)=0$ such that $\pi^{*} F=p_{Y}^{*} H \oplus p_{Z}^{*} T_{Z}$. Since H is polystable [PT, Lemma 2.1], it is a direct sum of unitary flat bundles [UY, Corollary 8.1]. Therefore it suffices to prove that $H \neq 0$.

Since $c_{1}(F)=0$ and $c_{1}(H)=0$, we get $c_{1}(Z)=0$. Therefore there exists a finite étale covering $A \times T \rightarrow Z$, where A is an abelian variety and T is a simply connected smooth projective variety with $c_{1}(T)=0[\mathrm{~B} 1]$. Without loss of generality, we may assume that $Z=A \times T$. Moreover, after replacing Y by $A \times Y$, we may assume in addition that Z is simply connected. In particular, the tangent bundle T_{Z} is not pseudo-effective [HP1, Theorem 1.6], so T_{Y} is pseudo-effective by Lemma 5.1.

Applying [PT, Theorem 2.2] to Y yields a regular foliation J on Y such that $T_{Y}=H \oplus J$. We have on one hand $\pi^{*} T_{X}=\pi^{*} F \oplus \pi^{*} G$, and on the other hand

$$
\pi^{*} T_{X}=p_{Y}^{*}(H \oplus J) \oplus p_{Z}^{*} T_{Z}=\pi^{*} F \oplus p_{Y}^{*} J
$$

this implies $p_{Y}^{*} J \cong \pi^{*} G$. Since $\mu_{\max }(G)<0, J$ is not pseudo-effective (Lemma 5.1). Therefore $H \neq 0$ and we are done.

Conjecture 5.5 is wide open in general. It is known in the following cases, proved by Touzet [To] and Druel [D1].
Proposition 5.7. Conjecture 5.5 holds if $\operatorname{rk}(F) \leqslant 3$ or $\operatorname{rk}(F)=\operatorname{dim}(X)-1$. In particular, it holds for $\operatorname{dim}(X) \leqslant 5$.
Proof. If $\operatorname{rk}(F) \leqslant 3$, this is proved in [D1, Proposition 6.8]. Assume $\operatorname{rk}(F)=\operatorname{dim}(X)-1$, and that F is not algebraically integrable. By [To, Théorème 1.2], there exists an abelian variety A, a smooth projective variety Y with $c_{1}(Y)=0$, a finite étale covering $\pi: A \times Y \rightarrow X$ and a linear foliation H on A such that $\pi^{*} F=p_{A}^{*} H \oplus p_{Y}^{*} T_{Y}$. Since F is stable for some polarization, Proposition 8.1 of [D2] implies that Y is a point. Then $\pi^{*} F=H$ is trivial, hence $c_{2}(F)=0$, a contradiction.

Corollary 5.8. Conjecture 5.3 holds for $\operatorname{dim}(X) \leqslant 5$.

Acknowledgements The first author is indebted to Feng Shao for several useful comments and references. The second author thanks S. Druel for useful communication. The second author was supported by the National Key Research and Development Program of China (Grant No. 2021YFA1002300), National Natural Science Foundation of China (Grant No. 12288201) and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-033).

References

B1 Beauville A. Variétés kählériennes dont la première classe de Chern est nulle. J Differential Geom, 1983, 18: 755-782
B2 Beauville A. Some remarks on Kähler manifolds with $c_{1}=0$. In: Classification of Algebraic and Analytic Manifolds. Progress in Mathematics, vol. 39. Boston: Birkhäuser, 1983, 1-26
B3 Beauville A. Complex manifolds with split tangent bundle. In: Complex Analysis and Algebraic Geometry. Berlin: De Gruyter, 2000, 61-70
BEHLV Beauville A, Etesse A, Höring A, Liu J, Voisin C. Symmetric tensors on the intersection of two quadrics and Lagrangian fibration. arXiv:2304.10919, 2023
BGL Biswas I, Gómez T, Logares M. Integrable systems and Torelli theorems for the moduli spaces of parabolic bundles and parabolic Higgs bundles. Canad J Math, 2016, 68: 504-520
Bo Bogomolov F. Holomorphic tensors and vector bundles on projective varieties. Math USSR-Izv, 1979, 13: 499-555
BDPP Boucksom S, Demailly J-P, Păun M, Peternell T. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J Algebraic Geom, 2013, 22: 201-248
CP Campana F, Peternell T. Geometric stability of the cotangent bundle and the universal cover of a projective manifold. Bull Soc Math France, 2011, 139: 41-74

C Cutkosky S. Asymptotic multiplicities of graded families of ideals and linear series. Adv Math, 2014, 264: 55-113
D1 Druel S. Some remarks on regular foliations with numerically trivial canonical class. Épijournal Geom Algébrique, 2017, 1: Article 4
D2 Druel S. A decomposition theorem for singular spaces with trivial canonical class of dimension at most five. Invent Math, 2018, 211: 245-296
D3 Druel S. Codimension 1 foliations with numerically trivial canonical class on singular spaces. Duke Math J, 2021, 170: 95-203
Fa Faltings G. Stable G-bundles and projective connections. J Algebraic Geom, 1993, 2: 507-568
Fu Fu B. Symplectic resolutions for nilpotent orbits. Invent Math, 2003, 151: 167-186
GW Greb D, Wong M. Canonical complex extensions of Kähler manifolds. J Lond Math Soc (2), 2020, 101: 786-827
Ha Hartshorne R. Ample Subvarieties of Algebraic Varieties. Lecture Notes in Mathematics, vol. 156. Berlin-New York: Springer-Verlag, 1970
Hi Hitchin N. Stable bundles and integrable systems. Duke Math J, 1987, 54: 91-114
HLS Höring A, Liu J, Shao F. Examples of Fano manifolds with non-pseudoeffective tangent bundle. J Lond Math Soc (2), 2022, 106: 27-59

HP1 Höring A, Peternell T. Algebraic integrability of foliations with numerically trivial canonical bundle. Invent Math, 2019, 216: 395-419
HP2 Höring A, Peternell T. Stein complements in compact Kähler manifolds. arXiv:2111.03303, 2021; Math Ann, 2024, to appear
Hs Hsiao J-C. A remark on bigness of the tangent bundle of a smooth projective variety and D-simplicity of its section rings. J Algebra Appl, 2015, 14: 1550098
HL Huybrechts D, Lehn M. The Geometry of Moduli Spaces of Sheaves, 2nd ed. Cambridge: Cambridge Univ Press, 2010
JLZ Jia J, Lee Y, Zhong G. Smooth projective surfaces with pseudo-effective tangent bundles. arXiv:2302.10077, 2023; J Math Soc Japan, 2024, to appear
Ki Kim J-S. Bigness of the tangent bundles of projective bundles over curves. C R Math Acad Sci Paris, 2023, 361: 1115-1122
Kl Klein F. Lectures on the Icosahedron and the Solution of Equations of the Fifth Degree. New York: Dover Publications, 1956
Ko Kobayashi S. Chern class and holomorphic tensor fields. Nagoya Math J, 1980, 77: 5-11
KS Kreuzer M, Skarke H. Complete classification of reflexive polyhedra in four dimensions. Adv Theor Math Phys, 2000, 4: 1209-1230
La Lazarsfeld R. Positivity in Algebraic Geometry, I and II. Ergebnisse der Mathematik und ihrer Grenzgebiete, vols. 48 and 49. Berlin: Springer-Verlag, 2004
Li Liu J. On moment map and bigness of tangent bundles of G-varieties. Algebra Number Theory, 2023, 17: 15011532
PT Pereira J V, Touzet F. Foliations with vanishing Chern classes. Bull Braz Math Soc (NS), 2013, 44: 731-754
S Sakai F. Symmetric powers of the cotangent bundle and classification of algebraic varieties. In: Algebraic Geometry. Lecture Notes in Mathematics, vol. 732. Berlin: Springer, 1979, 545-563
To Touzet F. Feuilletages holomorphes de codimension un dont la classe canonique est triviale. Ann Sci Éc Norm Supér (4), 2008, 41: 655-668
Ue Ueno K. Classification Theory of Algebraic Varieties and Compact Complex Spaces. Lecture Notes in Mathematics, vol. 439. Berlin-New York: Springer-Verlag, 1975
UY Uhlenbeck K, Yau S-T. On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Comm Pure Appl Math, 1986, 39: S257-S293

[^0]: * Corresponding author

[^1]: ${ }^{1)}$ Such a bundle is isomorphic to its dual, so we will not bother to distinguish them.

[^2]: ${ }^{2)}$ See, for example, [KS, p. 1221] for the construction of threefolds with this property.

