A second order traffic-flow model with constraint on the velocity for the Modeling of Traffic Jams

Florent Berthelin (Univ. Nice)

Joint work with

P. Degond (Toulouse), V. Le Blanc (ENS Lyon), S. Moutari (Nice), M. Rascle (Nice), J. Royer (Nantes)

Summary

- 1. Traffic models: overview on fluid models
- 2. Rescaled Modified Aw-Rascle
- 3. Limit $\varepsilon \to 0$: The Second Order Model with Constraint
- 4. SOMC: additional laws
- 5. Existence theorem for SOMC
- 6. Conclusion

1. Traffic models: overview on fluid models

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Fluid models (1)

Conservation of car density

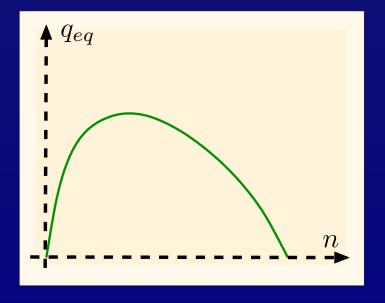
 $\partial_t n + \partial_x q = 0$

 \blacksquare What expression for the flux q?

Fluid models (1)

• Conservation of car density $\partial_t n + \partial_x q = 0$ • What expression for the flux q?

First order models: $q = q_{eq}(n)$ [Lighthill, Witham (1955)], ...



Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Fluid models (2)

Second order models: q = nu and gas dynamics-like eq. for u:

$$\partial_t nu + \partial_x (nu^2 + p) = -\frac{nu - q_{eq}(n)}{\tau}$$

→ [Payne (1971)], ...

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Fluid models (2)

Second order models: q = nu and gas dynamics-like eq. for u:

$$\partial_t nu + \partial_x (nu^2 + p) = -\frac{nu - q_{eq}(n)}{\tau}$$

→ [Payne (1971)], ...

- [Daganzo (1995)]: Inacceptable properties (e.g. Vehicles going backwards)
 - → Fluid ⇒ sound propagation is isotropic in a comoving frame
 - → Traffic: information propagates backwards

The Aw-Rascle model (1)

- Modified 2nd order model (see also [Zhang (2002)])
- \blacksquare Preferred velocity w is a Lagrangian quantity:

$$\dot{w} := (\partial_t + u\partial_x)w = 0$$

The Aw-Rascle model (1)

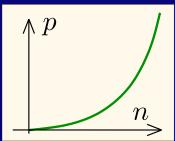
- Modified 2nd order model (see also [Zhang (2002)])
- \blacksquare Preferred velocity w is a Lagrangian quantity:

$$\dot{w} := (\partial_t + u\partial_x)w = 0$$

The actual velocity u offsets the preferred velocity w by a quantity p(n) which increases with n

$$w = u + p(n), \quad p \nearrow as n \nearrow$$

• Typically $p(n) = n^{\gamma}, \gamma > 0$



(Conclusion)

AR model (2)

$$\partial_t n + \partial_x (nu) = 0$$

$$(\partial_t + u\partial_x)(u + p(n)) = 0$$

Second eq. equivalent to

$$(\partial_t + (u - np'(n))\partial_x)u = 0$$

Two characteristic velocities:

→ $\lambda_1 = u - np'(n)$ (assoc.w. u, GNL) → $\lambda_2 = u$ (assoc.w. w = u + p(n), LD)

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Properties of AR model

- Invariant regions: (u, w) rectangles If
 - $a < u_0 < b$ and $c < w_0 < d$

then for all times

a < u(t) < b and c < w(t) < d

 \rightarrow Prevents u < 0 (no vehicle going backwards !)

Invariant regions: (u, w) - rectangles If

 $a < u_0 < b$ and $c < w_0 < d$

then for all times

a < u(t) < b and c < w(t) < d

 \rightarrow Prevents u < 0 (no vehicle going backwards !)

 AR model in Lagrangian coordinates = continuous version of Follow-the-Leader model [Aw, Klar, Materne, Rascle (2002)]

No invariant region for n !

- Problem: there is no invariant region for n $\rightarrow n > 0$ BUT:
 - → n can exceed the upper limit n^* (if any) even if initially $n < n^*$)
- Modified AR model (M-AR):
 - AR model which guarantees the constraint

 $n < n^*$

at all times

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Rescaled Modified AR model (RM-AR) 10

Perturbed AR system

$$\partial_t n^{\varepsilon} + \partial_x (n^{\varepsilon} u^{\varepsilon}) = 0$$

$$(\partial_t + u^{\varepsilon} \partial_x) (u^{\varepsilon} + \varepsilon p(n^{\varepsilon})) = 0$$

with modified velocity offset:

$$p(n) = \frac{1}{\left(\frac{1}{n} - \frac{1}{n^*}\right)^{\gamma}}$$

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Constrained Pressureless Gas Dynamics (CPGD)

Constrained Pressureless Gas Dynamics (CPGD)

 $\partial_t n + \partial_x (nu) = 0$ $(\partial_t + u \partial_x)(u + \bar{p}) = 0$ $\bar{p}(n^* - n) = 0$ $\bar{p} \ge 0, \quad 0 \le n \le n^*$

see e.g. [Brenier, ...], [B. and Bouchut] for gaseous corks in pipes

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

About the constraint

We want to improve CPGD model with

 $n^* = n^*(u)$

since it is well known that in practice, the distribution of vehicles on a highway, depends on their velocity

2. Rescaled Modified Aw-Rascle

(Summary)

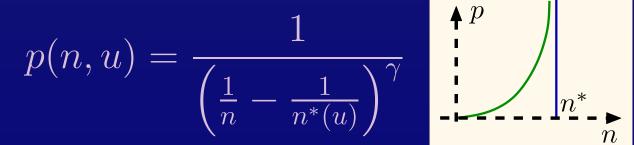
Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

From the Modified AR model $(M - AR^*)_{14}$

 \blacksquare Modify p(n) s.t.

 $p(n, u) \longrightarrow \infty$ as $n \longrightarrow n^*(u)$

➡ For instance



(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Density constraint

- $\longrightarrow M AR^*$ has the same properties as the standard AR model
 - → Hyperbolicity
 - → Invariant regions
- One linearly degenerate eigenvalue
- Under assumptions on $n^*(u)$, the other eigenvalue is genuinely non linear
- Satisfies the density constraint

$$n < n^*(u)$$

at all times

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Assumptions on $n^*(u)$

- $\implies n^*(u)$ is twice continuously differentiable
- $\rightarrow n^*(u)$ is strictly decreasing
- $\implies n^*(u)$ is concave
- The second assumption is natural since the minimum distance between drivers is an increasing function of the velocity

A singular situation

In practice: two traffic regimes:

- → Uncongested traffic (n < n*(u)): driver goes its preferred velocity
- → Congested traffic $(n \sim n^*(u))$: velocity is determined by the traffic conditions.

A singular situation

In practice: two traffic regimes:

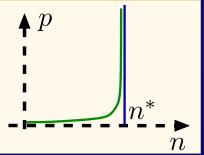
- → Uncongested traffic (n < n*(u)): driver goes its preferred velocity
- → Congested traffic $(n \sim n^*(u))$: velocity is determined by the traffic conditions.
- \implies in the $M AR^*$ model:
 - $\rightarrow p(n, u)$ very small as long as n not close to $n^*(u)$
 - → p(n, u) large (and possibly ∞) only when $\stackrel{\sim}{n \leq n^*(u)}$

A singular situation

In practice: two traffic regimes:

- → Uncongested traffic (n < n*(u)): driver goes its preferred velocity
- → Congested traffic $(n \sim n^*(u))$: velocity is determined by the traffic conditions.
- → Modeled by the rescaling:

$$p(n, u) = \varepsilon \tilde{p}(n, u)$$



Rescaled Modified AR^* model $(RM - AR^*)$

 \blacksquare Perturbed AR^* system

$$\partial_t n^{\varepsilon} + \partial_x (n^{\varepsilon} u^{\varepsilon}) = 0$$

$$(\partial_t + u^{\varepsilon} \partial_x) (u^{\varepsilon} + \varepsilon p(n^{\varepsilon}, u^{\varepsilon})) = 0$$

with modified velocity offset:

$$p(n,u) = \frac{1}{\left(\frac{1}{n} - \frac{1}{n^*(u)}\right)^{\gamma}}$$

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Rescaled Modified AR^* model $(RM - AR^*)$

 \blacksquare Perturbed AR^* system

$$\partial_t n^{\varepsilon} + \partial_x (n^{\varepsilon} u^{\varepsilon}) = 0$$

$$(\partial_t + u^{\varepsilon} \partial_x) (u^{\varepsilon} + \varepsilon p(n^{\varepsilon}, u^{\varepsilon})) = 0$$

with modified velocity offset:

$$p(n,u) = \frac{1}{\left(\frac{1}{n} - \frac{1}{n^*(u)}\right)^{\gamma}}$$

 $\varepsilon \longrightarrow 0$

Question: what happens in the limit

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

3. Limit $\varepsilon \to 0$: The Second Order Model with Constraint

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

$\varepsilon \rightarrow 0$: Case I (uncongested)

Suppose $n^{\varepsilon} \to n < n^{*}(u)$ (uncongested case) → Then $\varepsilon p(n^{\varepsilon}, u^{\varepsilon}) \to 0$ in $(RM - AR^{*})$ model:

$$\partial_t n^{\varepsilon} + \partial_x (n^{\varepsilon} u^{\varepsilon}) = 0$$

$$(\partial_t + u^{\varepsilon} \partial_x) (u^{\varepsilon} + \varepsilon p(n^{\varepsilon}, u^{\varepsilon})) = 0$$

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

(Conclusion)

Suppose $n^{\varepsilon} \to n < n^{*}(u)$ (uncongested case) Then $\varepsilon p(n^{\varepsilon}, u^{\varepsilon}) \to 0$ in $(RM - AR^{*})$ model:

> $\partial_t n^{\varepsilon} + \partial_x (n^{\varepsilon} u^{\varepsilon}) = 0$ $(\partial_t + u^{\varepsilon} \partial_x) (u^{\varepsilon} + \varepsilon p(n^{\varepsilon}, u^{\varepsilon})) = 0$

Limit system = Pressureless Gas Dynamics

 $\partial_t n + \partial_x (nu) = 0$ $(\partial_t + u\partial_x)u = 0$

Mass conservation Burger's eq. for the velocity

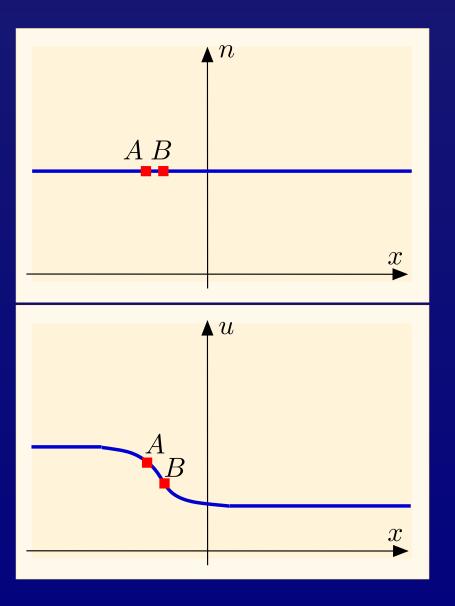
(Summary)

Pressureless Gas Dyn. properties 22

- Not strictly hyperbolic
 - \rightarrow 2 identical eigenvalues u
 - $\Rightarrow \text{ But not diagonalizable: Jacobian} = \begin{pmatrix} u & n \\ 0 & u \end{pmatrix}$

- Weak instability:
 - \rightarrow linearized solution increase like O(t)
- Generates mass concentrations

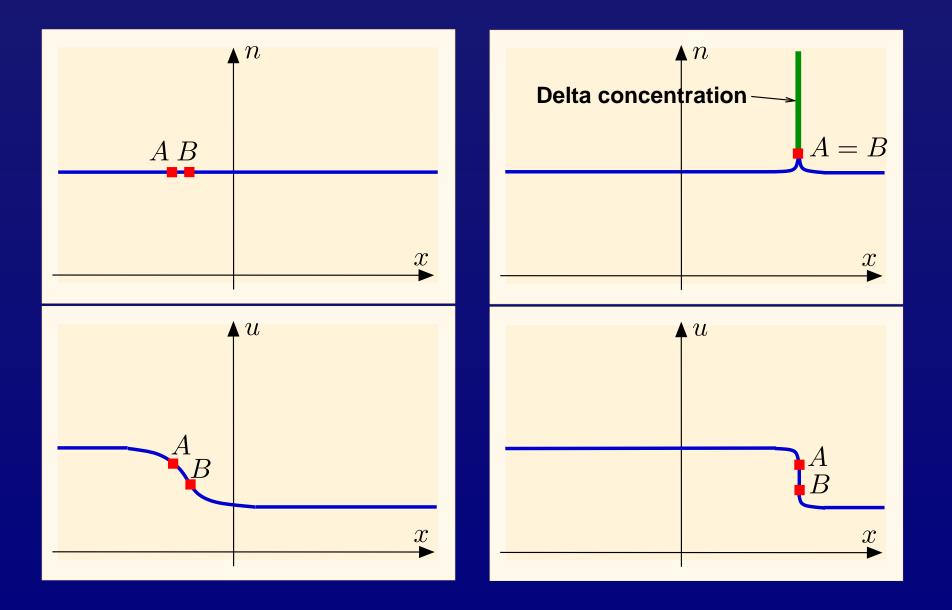
Pressureless Gas Dyn. concentrations 23



(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Pressureless Gas Dyn. concentrations 23



(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Beyond concentrations

- Concentrations = 'particles'
- Beyond concentration: solution not unique
 Depends on particle interaction model

Beyond concentrations

- Concentrations = 'particles'
- Beyond concentration: solution not unique
 Depends on particle interaction model
 - → Particles cross with no interaction

$$\begin{array}{c|c}1 & 2\\ \hline \bullet & \bullet & \bullet \\ \hline \bullet & \hline$$

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Beyond concentrations

- Concentrations = 'particles'
- Beyond concentration: solution not unique
 Depends on particle interaction model
 - --- Particles cross with no interaction

→ Sticky particles (Zeldowitch, E, ...)

$$\xrightarrow{1} 2 \qquad \xrightarrow{1+2} \qquad \xrightarrow$$

see e.g. [Bouchut (94)], [Grenier (95)], [Rykov, Sinai (96)],
 [Brenier, Grenier (98)], ...

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Here: no concentrations

- Density constraint: no concentration formation
 No need to define a particle dynamics
- Instead: formation of 'clusters' (traffic jams)
 - Cluster dynamics follows from the asymptotic limit

$\varepsilon \rightarrow 0$: Case II (congested)

- Suppose $n^{\varepsilon} \to n^{*}$ (then $p(n^{\varepsilon}, u^{\varepsilon}) \to \infty$) ■ Suppose $\varepsilon p(n^{\varepsilon}, u^{\varepsilon}) \to \bar{p} < \infty$
- \blacksquare Then $\varepsilon \to 0$ in $(RM AR^*)$ model:

$$\partial_t n^{\varepsilon} + \partial_x (n^{\varepsilon} u^{\varepsilon}) = 0$$

$$(\partial_t + u^{\varepsilon} \partial_x) (u^{\varepsilon} + \varepsilon p(n^{\varepsilon}, u^{\varepsilon})) = 0$$

$\varepsilon \rightarrow 0$: Case II (congested)

- Suppose $n^{\varepsilon} \to n^{*}$ (then $p(n^{\varepsilon}, u^{\varepsilon}) \to \infty$) ■ Suppose $\varepsilon p(n^{\varepsilon}, u^{\varepsilon}) \to \bar{p} < \infty$
- \blacksquare Then $\varepsilon \to 0$ in $(RM AR^*)$ model:

$$\partial_t n^{\varepsilon} + \partial_x (n^{\varepsilon} u^{\varepsilon}) = 0$$

$$(\partial_t + u^{\varepsilon} \partial_x) (u^{\varepsilon} + \varepsilon p(n^{\varepsilon}, u^{\varepsilon})) = 0$$

Gives

$$\partial_t n + \partial_x (nu) = 0$$

$$(\partial_t + u \partial_x)(u + \bar{p}) = 0$$

$$n = n^*(u)$$

 $\implies \bar{p}$ unknown: Lagrange multiplier

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

$\varepsilon \rightarrow 0$: Case II (congested)

Formaly, it is

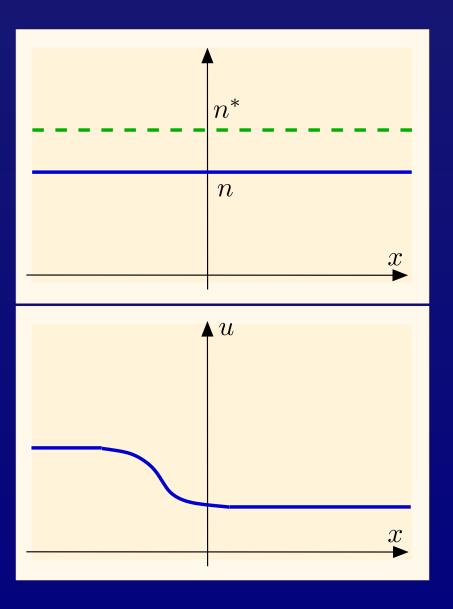
$$\partial_t n^*(u) + \partial_x (n^*(u)u) = 0,$$

Let $n \mapsto u^*(n)$ the inverse functional of $u \mapsto n^*(u)$, it rewrites

$$\partial_t n + \partial_x (n u^*(n)) = 0,$$

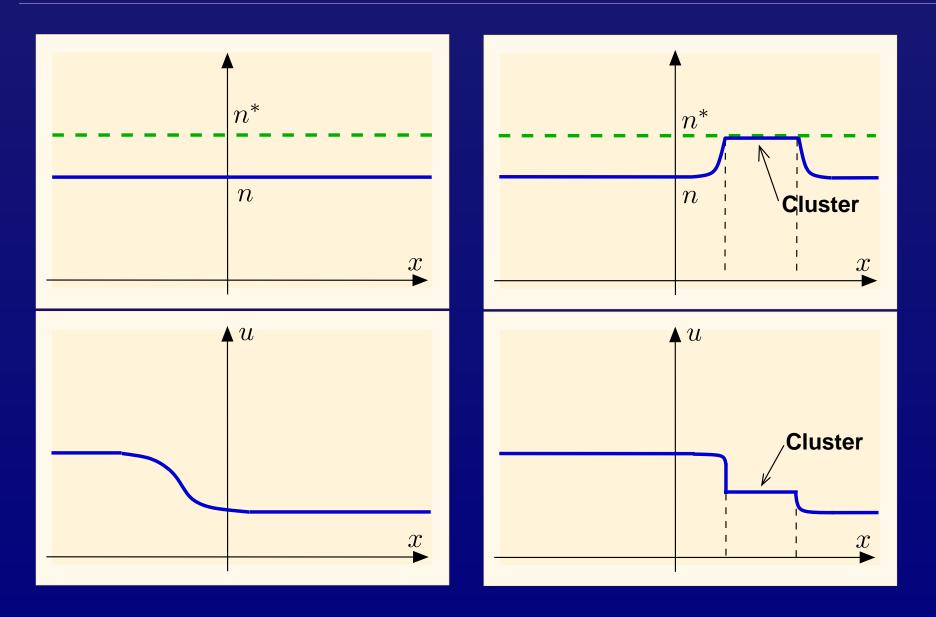
Therefore the second order model "relaxes" to the Lighthill, Witham first order model with the flux $q(n) = nu^*(n)$ when the maximal density constraint is saturated

Cluster formation



Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Cluster formation



(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

(Conclusion)

Unified formulation

Constrained Pressureless Gas Dynamics (CPGD)

 $\partial_t n + \partial_x (nu) = 0$ $(\partial_t + u \partial_x)(u + \bar{p}) = 0$ $\bar{p}(n^*(u) - n) = 0$ $\bar{p} \ge 0, \quad 0 \le n \le n^*(u)$

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

(Conclusion)

4. Second Order Model with Constraint: additional laws

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

SOMC model

SOMC formulation ill-posed
 lack of information for defining a unique solution

SOMC model

- SOMC formulation ill-posed
 lack of information for defining a unique solution
- To be defined
 - → Cluster dynamics
 - \rightarrow Value of \bar{p} inside clusters
 - → What if clusters meet ?

Characteristic velocities

If $n^{\varepsilon} \to n^{*}(u)$ with $\varepsilon p(n^{\varepsilon}, u^{\varepsilon}) \to \overline{p} < \infty$, then the Characteristic velocities:

$$ightarrow \lambda_1^{arepsilon}
ightarrow u + rac{n^*(u)}{(n^*)'(u)}$$

$$\rightarrow \lambda_2^{\varepsilon} = u^{\varepsilon} \rightarrow u$$

- A velocity variation in front of the cluster propagates with a finite speed
- In the case $n^* = \text{constant}$, any variation of the velocity of the leading car instantaneously propagates to the whole cluster since $\lambda_1^{\varepsilon} \to -\infty$

How to complete SOMC formulation 33

➡ Limit $(RM - AR^*) \rightarrow (SOMC)$ is formal

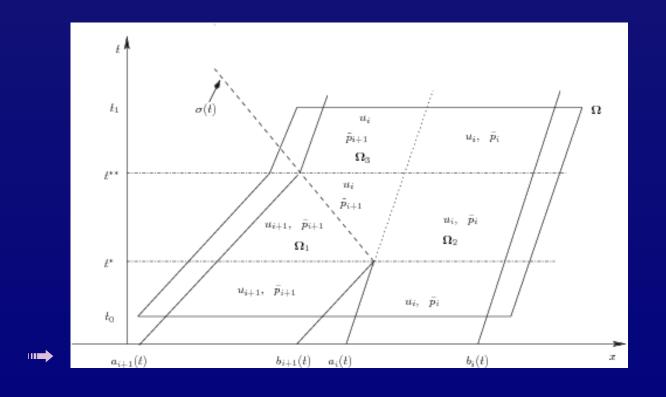
Gives no information about cluster dynamics
 beyond what has been noticed above

How to complete SOMC formulation 33

- ➡ Limit $(RM AR^*) \rightarrow (SOMC)$ is formal
 - Gives no information about cluster dynamics
 beyond what has been noticed above
- But Riemann problem solutions of $(RM AR^*)$ are explicit
 - → Limit $\varepsilon \to 0$ in these solutions give information about cluster dynamics

Cluster dynamics (from Riemann pbm) 34

When two clusters meet, a shock wave appears at the front of the cluster behind and propagates upstream with a finite speed



(Conclusion)

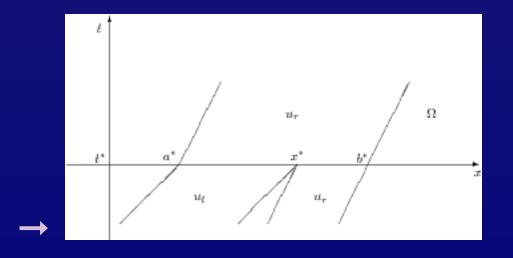
(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Cluster dynamics (difference with constant case)

When two clusters meet, they merge

→ The resulting cluster takes instantaneously the velocity of the front cluster (the slowest one)



(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

5. Existence theorem for SOMC

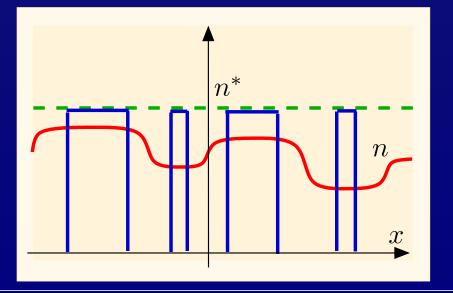
(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Cluster approximate solution

- Idea (follows from [B. and Bouchut (2002, 2003)]),
 - \rightarrow Approximate (in \mathcal{D}') the solution by clusters

$$\left(\begin{array}{c}n(x,t)\\(nu)(x,t)\end{array}\right)\approx\sum_{1}^{N}\left(\begin{array}{c}n^{*}(u_{i})\\n^{*}(u_{i})u_{i}(t)\end{array}\right)\chi_{a_{i}(t)\leq x\leq b_{i}(t)}$$



(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Properties of cluster dynamics

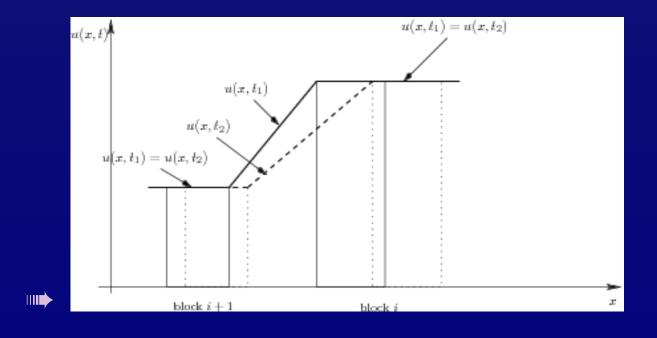
Is a weak solution of (SOMC)
 Satisfies L[∞] and BV bounds:

essinf $u^0(y) \le u(x,t) \le \text{esssup } u^0(y),$ $0 \le \overline{p}(x,t) \le \text{esssup } u^0(y) + \text{esssup } \overline{p}^0(y)$ $TV_K(u(.,t)) \leq TV_{\tilde{\kappa}}(u^0),$ $TV_{\mathcal{K}}(\bar{p}(.,t)) \leq TV_{\tilde{\mathcal{K}}}(\bar{p}^0) + 2TV_{\tilde{\mathcal{K}}}(u^0),$ for any compact K = [a, b] and with $\tilde{K} = \left[a - t \operatorname{esssup} \left|u^{0}\right|, b - t \operatorname{essinf} \left|u^{0}\right|\right]$

Properties of cluster dynamics (2) 39

We have equicontinuity in time:

$$\int_{\mathbb{R}} |u(x,t_2) - u(x,t_1)| \, dx \le ||u||_{\infty} \, |t_2 - t_1| \, TV(u^0)$$



(Summary)

1

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Properties of cluster dynamics (2) 40

We have equicontinuity in time:

$$\int_{\mathbb{R}} |u_k(x, t_2) - u_k(x, t_1)| \, dx \le ||u_k||_{\infty} \, |t_2 - t_1| \, TV(u^0)$$

With furthermore BV bound on u_k , a Cantor diagonal process argument implies

$$u_k \xrightarrow[k \to \infty]{} u$$
 in $L^1(\mathbb{R} \times [0, T])$.

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Proof of existence

- Step 1: approximate initial condition (n_0, u_0, \bar{p}_0) by a converging sequence of clusters (n_0^k, u_0^k, p_0^k)
 - → Defines a sequence of cluster sol. (n^k, u^k, \bar{p}^k) satisfying the above a priori bounds

Proof of existence

- Step 1: approximate initial condition (n_0, u_0, \bar{p}_0) by a converging sequence of clusters (n_0^k, u_0^k, p_0^k)
 - → Defines a sequence of cluster sol. (n^k, u^k, \bar{p}^k) satisfying the above a priori bounds
- Step 2: prove that (n^k, u^k, \bar{p}^k) is compact in spaces like $L^1, L^{\infty}_{w*}((0, \infty) \times \mathbb{R}),...$

- Step 1: approximate initial condition (n_0, u_0, \bar{p}_0) by a converging sequence of clusters (n_0^k, u_0^k, p_0^k)
 - → Defines a sequence of cluster sol. (n^k, u^k, \bar{p}^k) satisfying the above a priori bounds
- Step 2: prove that $(n^k, u^k, \overline{p}^k)$ is compact in spaces like $L^1, L^{\infty}_{w*}((0, \infty) \times \mathbb{R}),...$
- Step 3: Prove the convergence of the products $n^k u^k$, $n^k \bar{p}^k$, $n^*(u_k) \bar{p}_k$, ... in $L^{\infty}_{w*}((0,\infty) \times \mathbb{R})$ and obtain a solution of (SOMC).

Existence result

Suppose

- $\implies n_0 \in L^1 \cap \overline{L^{\infty}},$
- $\twoheadrightarrow u_0 \in L^{\infty} \cap BV, \qquad 0 \le n_0 \le n^*(u_0)$
- $\rightarrow \bar{p}^0 \in L^{\infty} \cap BV$ in cluster form

Existence result

Suppose

- $\rightarrow n_0 \in L^1 \cap L^\infty,$
- $\Rightarrow u_0 \in L^{\infty} \cap BV, \qquad 0 \le n_0 \le n^*(u_0)$
- $\rightarrow \bar{p}^0 \in L^{\infty} \cap BV$ in cluster form
- $\implies \exists n \in L^{\infty}_t(L^{\infty}_x \cap L^1_x), u, \bar{p} \in L^{\infty}_{x,t}$
 - → a solution of SOMC
 - \rightarrow satisfying L^{∞} and BV bounds

6. Conclusion

(Summary)

Florent Berthelin - Traffic flows - CIRM Oct 28 - Nov 1, 2007

Modified Aw-Rascle model

- Density constraint
- Rescaled for small difference between preferred velocity and actual velocity in uncongested situations

ΔΔ

Modified Aw-Rascle model

- → Density constraint
- Rescaled for small difference between preferred velocity and actual velocity in uncongested situations
- Limit model
 - --- Constrained Pressureless Gas Dynamics
 - → Describes well cluster formation and dynamics
 - → Existence theorem

Perspectives

SOMC:

- \rightarrow Convergence proof $(RM AR^*) \rightarrow (SOMC)$
- → About unicity of the solution ?
- Lagrangian formulation and scheme

Perspectives

➡ SOMC:

- \rightarrow Convergence proof $(RM AR^*) \rightarrow (SOMC)$
- → About unicity of the solution ?
- ---- Lagrangian formulation and scheme
- More elaborate model
 - → Multi-lane
 - → Multi-class
 - → etc.