
1 Introduction

In the last several years there has emerged an extensive literature [1-11] on “higher order” traffic

models. These models were developed in an attempt to explain the strong permanent waves

which appear in congested traffic. At the continuum level all of these models are of the form:

∂s

∂t
−

∂u

∂m
= 0 (1.1)

and

ε

(

∂u

∂t
− P ′(s)

∂u

∂m

)

= V (s) − u. (1.2)

Here, t ≥ 0 is time, m is a “continuous” car index, and ε > 0 has the interpretation of a

relaxation time. The velocity of the mth car at time t is u(m, t) and the trajectory of the mth

car, t → x(m, t), is given as the solution of

∂x

∂t
= u and x(m, 0) = x0(m) (1.3)

where x0(m) is the position of the mth car at t = 0. s(m, t) is related to x(m, t) by

s(m, t) =
∂x

∂m
(m, t) (1.4)

and measures the spacing between successive cars.
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The function s → V (s) in (1.2) represents an “equilibrium” velocity and typically it is

assumed that V (·) is defined on s ≥ L and satisfies

V (L) = 0, 0 < V ′(s) for L < s, and lim
s→∞

V (s) = v∞ < ∞. (1.5)

The parameter L > 0 has the interpretation of the length of a car on the roadway. Finally,

the term P ′(s) ∂u
∂m appearing in (1.2) is referred to as the “anticipatory” acceleration and all

modelers assume that P ′(s) ≥ 0 on s ≥ L.

An equivalent system to (1.1) and (1.2) is

∂s

∂t
−

∂

∂m
(P (s) + α) = 0 (1.6)

and

ε
∂α

∂t
+ α = (V (s) − P (s)). (1.7)

Here, P (s) is an indefinite integral of P ′(·) normalized so that P (L) = 0 and, of course,

u(m, t) = P (s(m, t)) + α(m, t). (1.8)
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The hypothesis P ′(s) ≥ 0 implies that the system (1.1) and (1.2) or equivalently (1.6) and (1.7)

is hyperbolic with wave speeds c = −P ′(s) ≤ 0 and c = 0 and thus information propogates

from right to left. This observation implies that when constructing finite difference schemes

the appropriate spatial differences should be downwind, i.e., that

s(m, t)=̇
x(m + ∆m, t) − x(m, t)

∆m
(1.9)

and

∂u

∂m
(m, t) =

∂

∂m
(P (s) + α)(m, t)=̇

(P (s(m + ∆m, t)) + α(m + ∆m, t) − P (s(m, t)) − α(m, t))

∆m
.

(1.10)
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If one chooses to discretize (1.1)-(1.4) spatially, keeps time continuous, and, moreover, chooses

∆m = 1 (recalling that cars are really discrete entities) one is led to the classic follow-the-leader

system
dxm

dt
= um (1.11)

and

ε
dum

dt
= εP ′(xm+1 − xm)(um+1 − um) + V (xm+1 − xm) − um (1.12)

studied by traffic engineers. Moreover, if we let

sm = xm+1 − xm (1.13)

we see that solving (1.11) and (1.12) is equivalent to solving

dsm

dt
= (P (sm+1) + αm+1 − P (sm) − αm) (1.14)

ε
dαm

dt
+ αm = (V (sm) − P (sm)) (1.15)

and

um = P (sm) + αm (1.16)

and this latter system is nothing more than the appropriate spatial discretization of (1.6) and

(1.7) with ∆m = 1.
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On the other hand, if one lets

ρ(x, t) =
1

s(m, t)
and v(x, t) = u(m, t) (1.17)

when

x = x(m, t), (1.18)

one finds that as functions of x and t the functions ρ and v satisfy

∂ρ

∂t
+

∂

∂x
(ρv) = 0 (1.19)

and

ε

(

∂v

∂t
+ (v + ρR,ρ (ρ))

∂v

∂x

)

= W (ρ) − v, (1.20)

where

R(ρ)
def
= P (1/ρ) and W (ρ)

def
= V (1/ρ). (1.21)

Of course

ρ2R,ρ (ρ) = −P ′(s = 1/ρ) ≤ 0 and ρ2W,ρ (ρ) = −V ′(s = 1/ρ) ≤ 0. (1.22)

5



In the parlance of continuum mechanic the system (1.1) and (1.2) is the Lagrangian descrip-

tion of the traffic and (1.19) and (1.20) the Eulerian description. Here, we shall work with the

Lagrangian description.

We start with a number of observations about solutions of (1.1) and (1.2). The first is that

for any number seq > L that the functions

(s(m, t), u(m, t)) ≡ (seq, V (seq)), −∞ < m < ∞ (1.23)

are constant solutions of (1.1) and (1.2).

One of the issues before us is under what conditions are these solutions

stable and more importantly what happens if they are unstable. For definiteness

we shall confine our attention to the ring-road scenario; that is we shall assume that all solutions

satisfy the periodic boundary conditions:

(s, u)(m + M, t) = (s, u)(m, t), −∞ < m < ∞. (1.24)

Here, M > 0 represents the number of cars on our ring-road. The conservation structure of

(1.1) also guarantees that for all t > 0

∫ M

0

s(m, t)dm ≡

∫ M

0

s(m, 0)dm
def
= ` (1.25)

and ` represents the length of the ring-road.

6



For the discrete system (1.11) and (1.12) (or equivalently (1.14) and (1.15)) we impose the

discrete analog of (1.24) and (1.25), namely the conditions that

(sm+M , um+M)(t) = (sm, um)(t) (1.26)

M
∑

j=0

sj(t) =

M
∑

j=0

sj(0) = `. (1.27)

The latter condition implies that xm+M(t) = xm(t) + `.

In an early paper on this subject I proved the following Theorem for solutions of (1.1) - (1.4)

satisfying the boundary conditions (1.24) and (1.25) which assume the initial conditions

s(m, 0+) = s0(m) and u(m, 0+) = u0(m),−∞ < m < ∞. (1.28)
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Theorem 1. Suppose s → P (s) satisfies

P (L) = 0 and 0 < P ′(s), P ′′(s) < 0, and P (s) > V (s) for s > L. (1.29)

Suppose further that at t = 0 the initial data satisfies

L ≤ s0(m) and 0 ≤ u0(m) ≤ P (s0(m)) (1.30)

for all m. Then, for any t > 0 the same inequalities hold; that is for all m

L ≤ s(m, t) and 0 ≤ u(m, t) ≤ P (s(m, t)). (1.31)

Moreover, the analogus result is true for solutions of the discrete system (1.11) and (1.12). �

These a-priori estimates form the basis for establishing an existence theorem for the system

(1.1) and (1.2).

u

L

P(  )

V(  )

s

.

.
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In the remainder of this talk I shall limit myself to the analysis of (1.1)-(1.2) when P (·)

and V (·) satisfy (1.29) and (1.5). I shall also assume that V ′(·) has an isolated maximum at

s∗ > L, that

V ′′(s) > 0, L ≤ s < s∗ and V ′′(s) < 0, s∗ < s < ∞, (1.32)

that the difference (P ′ − V ′) (·) has two isolated zeros at points s1 and s2 satisfying L < s1 <

s∗ < s2 < ∞, and finally that (P ′ − V ′)(·) > 0 on (L, s1) ∪ (s2,∞).

u

L

P(  )

V(  )

s

s
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.
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1 2
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(P  −V )( ).
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I shall give a simple argument that shows that if the equilibrium solution for seq is in (s1, s2),

the constant solution is unstable. This latter result will be established by using a Chapman-

Enskog expansion of the solutions of (1.1) and (1.2). I’ll also show some numerical simulations.

I shall limit myself to the case where

P (s) = λ(1 − L/s) , L ≤ s (1.33)

and V (·) given by

V (s) =
v∞

(

tanh
(

s−rL
δ

)

+ tanh
(

(r−1)L
δ

))

(

1 + tanh
(

(r−1)L
δ

)) (1.34)

when

r > 1, v∞ > 0, and δ > 0. (1.35)

I shall demonstrate that for nonconstant initial data taking on values in the unstable interval

(s1, s2) solutions converge to traveling waves. These simulations will be run on the follow-the-

leader model (1.11)-(1.12). Time permitting I shall show how to construct the large amplitude

periodic traveling wave solutions to (1.1)-(1.2) reminiscent of the waves seen in congested traffic.
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2 Stability of the Equilibrium Solution (1.23)

Here we seek a simple criterion indicating whether the equilibrium solution defined in (1.23) is

stable or not. For simplicity we assume that the relaxation time 0 < ε is small. We focus on

obtaining a solution of (1.6) and (1.7) where the α component of the solution is of the form

α ∼ α0 + εα1 + . . . + εnαn + . . . (2.1)

and each of the αi’s is independent of ε and, moreover, is a functional s and its spatial deriva-

tives.

Instead of examining the stability of the solution (seq, V (seq)) of the original system we shall

examine whether seq is a stable solution of

∂s

∂t
=

∂

∂m

(

P (s) +

∞
∑

i=0

εiαi

)

. (2.2)

Insertion of the ansatz (2.1) into (1.7) yields

α0 = V (s) − P (s) and αi = −
∂αi−1

∂t
(2.3)

which is not exactly a solution of the desired type. But, if we exploit (2.3)1 and (2.2) we find

that
∂s

∂t
= V ′(s)

∂s

∂m
+ 0(ε) (2.4)

and from this latter relation we readily obtain

α1 = V ′(s)(P ′(s) − V ′(s))
∂s

∂m
. (2.5)
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If desired, the remaining αi’s may be obtained from (2.3) by exploiting the fact that (2.4)

implies

∂p+1s

∂t(∂m)p
=

∂p

(∂m)p

(

V ′(s)(P ′(s) − V ′(s))
∂s

∂m

)

+ 0(ε). (2.6)

Rather than carry through the infinite process of determining all of the αi’s we shall truncate

the series at order 1, that is insist that

α = V (s) − P (s) + εV ′(s)(P ′(s) − V ′(s))
∂s

∂m
(2.7)

and examine whether or not s ≡ seq is a stable solution of

∂s

∂t
=

∂

∂m

(

V (s) + εV ′(s) (P ′(s) − V ′(s))
∂s

∂m

)

. (2.8)
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This latter equation has a strong maximum principle so long as the initial data for s satisfies

either

L ≤ s(m, 0) < s1 for all m (2.9)

or

s2 ≤ s(m, 0) < ∞ for all m (2.10)

because in either of these cases the diffusion coefficient, V ′(s)(P ′(s) − V ′(s)), is positive. On

the other hand, when s1 < s < s2, the diffusion coefficient is negative and this yields explosive

growth of the solution. Thus, if seq ∈ (s1, s2), the interval where (P ′−V ′)(s) < 0, the constant

solution s ≡ seq is an unstable solution of (2.8). It is easily checked that this same conclusion

is valid as regards the linear instability of (1.23) for the full system (1.6) and (1.7).
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3 Simulations

In this section we present some numerical simulations for the follow-the-leader system (1.11)

and (1.12). We choose non-constant initial data which lies wholly within the unstable interval.

Throughout we shall work with

P (s) = λ

(

1 −
L

s

)

, L ≤ s (3.1)

and

V (s) = v∞

(

tanh
(

s−rL
δ

)

+ tanh
(

(r−1)L
δ

))

(

1 + tanh
(

(r−1)L
δ

)) . (3.2)

The specific parameters used were

L = 15 feet (3.3)

λ = 150 feet/sec = 102.2727 . . . mph, (3.4)

v∞ = 100 feet/sec = 68.1818 . . . mph, (3.5)

δ = 15 feet (3.6)

and

r = 3. (3.7)
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For initial data, we choose three sets of data

x(k)
m (0) = 45m + 4

m−1
∑

j=0

sin

(

kjπ

200

)

(3.8)

and

u(k)
m (0) = 35 feet/sec (3.9)

for m = 0,±1,±2, . . . and k = 1, 2, and 3. The observation that

x
(k)
m+400(0) = x(k)

m (0) + 18000 (3.10)

implies that we may interpret the data as initial data for a ring-road with 400 cars which is of

length 18000 feet.

For our choice of parameter values the unstable region for (P ′ − V ′)(·) is the interval

33.59625. . . < s < 69.8215 and our data has initial car spacings

s(k)
m (0) = x

(k)
m+1(0) − x(k)

m (0) (3.11)

which lie in that interval. A graph of s → (P ′− V ′)(s) is shown in the fourth panel of Figures

1-3. Simulations were run with relaxation times

ε = 1, 5, and 10. (3.12)
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We show the spatially periodic solutions at time t = 1 hour when ε = 10 seconds. Figures

1, 2 and 3 correspond to the initial data indexed by k = 1, 2, and 3 respectively. The solution

indexed by each particular k has k discontinuities per period after one hour. Run over a longer

period, they all revert to a solution with one discontinuity per period.

The first two frames in each figure are self-explanatory. In the third frame of each figure we

plot the curve m → (sm = xm+1 − xm, um). This curve is shown in green. The blue curve

is the equilibrium curve s → (s, V (s)) and the black curve is a suitably normalized image of

P (·). The black dot -o- is the image of (s1, u1).
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4 Large amplitude periodic traveling waves

Based on the computational evidence presented in the last section we are led to look for traveling

wave solutions to the full system (1.6) and (1.7). These will be solutions which are functions of

ξ = m + ct , c > 0 (4.1)

which are periodic in ξ with period M , the number of cars on the ring-road. The conversation

structure of (1.6) implies that the s(·) component of the solution satisfies

∫ M

0

s(ξ)dξ = l (4.2)

where l is the length of the ring-road.
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Insertion of the ansatz (4.1) into (1.6) implies that u(·) and s(·) satisfy

P (s) + α = u(ξ) = u# + c(s(ξ) − s#) (4.3)

and we insist that

u# = V (s#) and s(0) = s# ∈ (s1, s2). (4.4)

The relations (4.3) and (4.4) further imply (1.7) reduces to that

εc (c − P ′(s))
ds

dξ
= (V (s) − V (s#) − c(s − s#)) . (4.5)

We seek a solution to (4.4) and (4.5) which is increasing on −ma < ξ < Ma where −ma <

0 < Ma. For speeds 0 < c < V ′(s#), we see that the right hand side of (4.5) satisfies

sign (V (s) − V (s#) − c(s − s#)) = sign (s − s#) (4.6)

for |s− s#| small enough and thus to obtain an increasing solution to (4.4) and (4.5) on some

interval containing ξ = 0 in its interior we are compelled to choose

c = P ′(s#). (4.7)
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This choice of c, together with the hypothesis that P ′′(·) < 0, guarantees that

sign (P ′(s#) − P ′(s)) = sign (s − s#) (4.8)

and thus, with this choice of c, we are guaranteed a solution of (4.4) and (4.5) defined in some

interval −m̃a < ξ < M̃a where −m̃a < 0 < M̃a. Moreover, this solution satisfies

ds

dξ
(0) =

− (V ′(s#) − P ′(s#))

εP ′(s#)P ′′(s#)
> 0 (4.9)

for s1 < s# < s2.

We shall now refine the observations of the preceding paragraphs. If

V (L) − V (s2) − P ′(s2)(L − s2) > 0 (4.10)

we let s̄ in (s1, s2) be the unique solution of

V (L) − V (s̄) − P ′(s̄)(L − s̄) = 0 (4.11)

whereas, if

V (L) − V (s2) − P ′(s2)(L − s2) ≤ 0 (4.12)

we let

s̄ = s2. (4.13)
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In either case, for any s# in (s1, s̄) we let L < s−(s#) < s# < s+(s#) be the other two

solutions of

V (s±) − V (s#) − P ′(s∗)(s± − s#) = 0. (4.14)

We of course have

V (s) − V (s#) − P ′(s#)(s − s#) < 0 s−(s#) < s < s# (4.15)

and

V (s) − V (s#) − P ′(s#)(s − s#) > 0 , s# < s < s+(s#). (4.16)

For any sa in (s−(s#), s#) we now let S(sa) > s# be the unique solution of

P (S(sa)) − P (sa)

S(sa) − sa
= P ′(s#) (4.17)

and note that
dS(sa)

dsa
=

(P ′(s#) − P ′(sa))

(P ′(s#) − P ′ (S(sa)))
< 0. (4.18)
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We also let s(s#) be the smallest value of sa ≥ s−(s#) such that S(sa) ≤ s+(s#) and for any

sa in (s(s#), s#) we let

−ma = εP ′(s#)

∫ s#

sa

(P ′(r) − P ′(s#)) dr

(V (r) − V (s#) − P ′(s#)(r − s#))
< 0 (4.19)

and

Ma = εP ′(s#)

∫ S(sa)

s#

(P ′(s#) − P ′(r))dr

(V (r) − V (s#) − P ′(s#)(r − s#))
> 0. (4.20)

I note that one of the integrals (4.19) or (4.20) or both diverge as sa → s(s#)+. For any ξ in

(−ma, Ma), the solution to (4.4) and (4.5) is given by the quadrature formula

εP ′(s#)

∫ s(ξ)

s#

(P ′(s#) − P ′(r)) dr

(V (r) − V (s#) − P ′(s#)(r − s#))
= ξ (4.21)

and the solution is extended to (−∞,∞) by insisting that the periodicity condition

s (ξ ± n(ma + Ma)) = s(ξ), n = 0, 1, . . . (4.22)

holds. As constructed, the solution has jump discontinuities as the points
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Ma ± n(ma + Ma), n = 0, 1, . . ., and (4.17), (4.19), and (4.20) guarantee that the Rankine

Hugoinot condition for (1.6) and (1.7) holds across these discontinuities. The Lax entropy

condition that s− (Ma ± n(ma + Ma)) > s+ (Ma ± n(ma + Ma)) is also guaranteed since

s−(Ma ± n(ma + Ma)) = S(sa) > sa = s+(Ma ± n(ma + Ma)). (4.23)

What remains to be shown is that for integers k = 1, 2, . . . we can choose sa in (s(s#), s#)

and s# in (s1, s) so that

k(ma + Ma) = M (4.24)

and

∫ M

0

s(ξ)dξ = l. (4.25)

The integer k represents the number of increasing segments per period.
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In [10] the author gave an exhaustive analysis of the system (4.24) and (4.25). These equa-

tions are equivalent to showing the existence of a pair

sa ∈ (s(s#), s#) and s# ∈ (s1, s)

satisfying

kεP ′(s#)

∫ S(sa)

sa

(P ′(s#) − P ′(r)) dr

(V (r) − V (s#) − P ′(s#)(r − s#))
= M. (4.26)

kεP ′(s#)

∫ S(sa)

sa

(P ′(s#) − P ′(r)) rdr

(V (r) − V (s#) − P ′(s#)(r − s#))
= l. (4.27)

For the simulations run in section 3 we had M = 400 and l = 18, 000 and s# was 0(40). The

interested reader may consult [10] for the details.

Once again

P (S(sa)) − P (sa)

S(sa) − sa
= P ′(s#).
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5 Concluding Remarks

We note in passing that many of the results obtained for the traffic system (1.1) and (1.2)

obtain for any one-dimensional continuum system of the form:

∂s

∂t
−

∂u

∂m
= 0 (5.1)

and

∂u

∂t
−

∂σ(s)

∂m
= (V (s) − u)/ε (5.2)

provided s → σ(s) and s → V (s) satisfy

σ′(s) > 0 and σ′′(s) < 0 , 0 < s, (5.3)

V (s) > 0 and V ′(s) < 0 , 0 < s, (5.4)

and there is a number 0 < s2 so that

sign (σ′(s) − (V ′)2(s)) = sign (s − s2). (5.5)

One typically further assumes that

lim
s→0+

σ(s) = −∞ and lim
s→∞

V (s) = ∞. (5.6)

24



In particular, one finds that the equilibrium solutions

(s, u)(m, t) ≡ (seq, V (seq)), −∞ < m < ∞

are unstable if 0 < seq < s2 and linearly stable if s2 < seq < ∞. These systems also support

large amplitude periodic traveling waves of the type seen in sections 3 and 4. These waves are

functions of ξ = m + ct and satisfy

V ′(s#) < c = −(σ′(s#))1/2 < 0, (5.7)

(c2 − σ′(s))
ds

dξ
= V (s) − V (s#) − c(s − s#), (5.8)

and

s(0) = s#. (5.9)

The smooth portions of these solutions are monotone decreasing on a < ξ < b and the numbers

sa = lim
ξ→a+<0

s(ξ) and sb = lim
ξ→b−>0

s(ξ)

satisfy

c2 = σ′(s#) =
σ(sa) − σ(sb)

sa − sb

which is the Rankine-Hugoniot condition for the system. On the interval a < ξ < b, u is given

by

u(ξ) = V (s#) + c(s(ξ) − s#)

and the solutions are extended to −∞ < ξ < ∞ by insisting that

s(ξ ± n(b − a)) = s(ξ) , n = 0, 1 . . .

holds.
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At each of the jump points these solutions satisfy the Lax entropy condition for the system,

namely the condition that

lim u(ξ)
ξ→(b±n(b−a))−

> lim u(ξ)
ξ→(b±n(b−a))+

.

Roll waves are an interesting example of such waves; for details see [12] and [13].
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