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Freeway management problemsFreeway management problems

• Dimensioning 

f• Performance measure

• Ramp meteringRamp metering

• Variable speed limits

• Incident detection

• Model parameter estimationModel parameter estimation

• Traffic state estimation
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Classical performance measures

• Vehicle Miles Traveled (VMT)( )

• Total Travel Time (TTT)

• Total Waiting Time (TWT)

T t l Ti S t (TTS TTT TWT)• Total Time Spent (TTS = TTT + TWT)

• Total Served Vehicles (TSV)



Classically multi objectiveClassically multi-objective

• Travel time & confort for the users

• Safety for the authorities

• Deteriorated condition management for operators

• Optimisation of the investments for the state• Optimisation of the investments for the state

Or discrete versions…



Study case 1Study case 1

Lyon, France



Study case 1Study case 1

versus



Study case 2Study case 2

I-80

Bay Area



BHL data courtesy of FHWABHL data – courtesy of FHWA

Instabilities

Stop & go waves

Damped 
perturbations
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Inhomogeneous LWRg

2 ways of thinking:

• Inhomogeneous termInhomogeneous  term

• Homogeneous PDEs + interface conditions



Inhomogeneous LWR
• Kruzkov, Bardos-Leroux-Nedelec

g

• Demand/Supply (Lebacque, Daganzo)

• Discontinuous fluxes (Temple Towers Colombo )• Discontinuous fluxes (Temple, Towers, Colombo,…)

Riemann solver :Riemann solver :

11 cases

…

Classification



InhomogeneousInhomogeneous 
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Why receding horizon control ?Why receding horizon control ?

1 Freeway management is mostly an optimal1. Freeway management is mostly an optimal 
allocation problem, not a tracking problem.

2. Hyperbolicity implies some controllability2. Hyperbolicity  implies some controllability 
and observability properties that are not 
suitable for feedback controlsuitable for feedback control.
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Time

Shock speed 
depends on state p
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Optimal control of I-LWROptimal control of I LWR

Classical optimization loop for PDE:

• Solve the system equation with a candidatey q

• Solve the adjoint system backwards

E l t th bj ti di t d it t• Evaluate the objective gradient and iterate

But some serious issues here:

• What is the linearization of a conservation law ?• What is the linearization of a conservation law ?

• How to solve the adjoint system ?



Optimal control of I-LWROptimal control of I LWR

Linearization:

• Godlewski-Raviart Bardos-PironneauGodlewski Raviart, Bardos Pironneau

• Bressan-Guerra, Bianchini, Colombo

Shift  differentiability

Euler-Lagrange equations
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Optimal control of I LWR

Solution structure: well behaved BV functions

[Di Perna, Dafermos] Solutions are mesure 
theoretically C1 with jumps along measure 
theoretically C1 surfaces.y

Decomposition in absolutely continuous and singular parts

Integration by parts :
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Relationship  with                             ?



Example
Burgers equation with:

p



PDE & ODE solutionsPDE & ODE solutions

Absolutely continuous part Singular party p

Smooth part sensitivity

g p

Shock position sensitivity
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Optimal control of I LWROptimal control of I-LWR

Conclusion:
• FormalFormal 
• Nice interpretations

Gi i i ht th li it ti• Give some insights on the limitations

Main drawbacks:
• Computationnaly tricky (shock detection)Computationnaly tricky (shock detection)
• No ramp queue model



Finite dimensional approximationFinite dimensional approximation
• Piecewise affine approximation of the pp

fundamental diagram (Front Tracking, CTM)

• concave relaxation [Gomes Horowitz]• « concave » relaxation [Gomes-Horowitz]

• Leads to an LP problem for ramp metering

• Demand/Supply ramp model



Finite dimensional approximationFinite dimensional approximation

Space: 4.5 kmSpace: 4.5 km
Time: 5 min
Max ramp flow: 1000 veh/hMax ramp flow: 1000 veh/h 



Finite dimensional approximationFinite dimensional approximation

Demand
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Finite dimensional approximationFinite dimensional approximation

VMT VMT + k . TSV

Flow  improvement on mainlane



Finite dimensional approximationFinite dimensional approximation

VMT VMT + k . TSV

Ramp  flow  signals



Finite dimensional approximationFinite dimensional approximation

VMT VMT + k . TSV

Ramp  queues



Finite dimensional approximationFinite dimensional approximation

Instantaneous control  leads to a local structure

Local Instantaneous Control (LIC)



Finite dimensional approximationFinite dimensional approximation
Flow improvement = Flow (MPC)  - Flow (LIC)p ( ) ( )



Finite dimensional approximationFinite dimensional approximation

Ramp flow Ramp queues


