Receding horizon control of freeways

Denis Jacquet (jacquet@protoptim.fr)

CRIM meeting - November 2007

Content & credits

- Freeway traffic management issues
- Discussions around the LWR model
- Solution of the inhomogeneous LWR (I-LWR)
- Optimal control for the I-LWR
- Finite dimensional approximations
- 11/2006: PhD in automatic control (Grenoble)
- Credits: C. Canudas de Wit (CNRS Grenoble)
 - R. Horowitz (UC Berkeley ME dept.)
- R&D company in modelling, optimization & control

Dimensioning

- Dimensioning
- Performance measure

- Dimensioning
- Performance measure
- Ramp metering

- Dimensioning
- Performance measure
- Ramp metering
- Variable speed limits

- Dimensioning
- Performance measure
- Ramp metering
- Variable speed limits
- Incident detection
- Model parameter estimation
- Traffic state estimation

Ramp metering problem

Ramp metering problem

Classical performance measures

Vehicle Miles Traveled (VMT)

$$\mathcal{J}_{VMT}(\phi) = \int_0^T \int_0^L \phi(x,t) \, dxdt$$

Total Travel Time (TTT)

$$\mathcal{J}_{TTT}(\rho) = \int_0^T \int_0^L \rho(x,t) \ dxdt$$

Total Waiting Time (TWT)

$$\mathcal{J}_{TWT}(q) = \sum_{j} \int_{0}^{T} q_{j}(t) dt$$

- Total Time Spent (TTS = TTT + TWT)
- Total Served Vehicles (TSV)

$$\mathcal{J}_{TSV}(r) = \sum_{j} \int_{0}^{T} r_{j}(t) dt$$

Classically multi-objective

- Travel time & confort for the <u>users</u>
- Safety for the <u>authorities</u>
- Deteriorated condition management for <u>operators</u>
- Optimisation of the investments for the <u>state</u>

$$\mathcal{J}_{WTWT}(q) = \sum_{j} \int_{0}^{T} \omega_{j}.q_{j}(t) dt$$

$$\mathcal{J}_{WTTS}(\rho, q) = \int_0^T \int_0^L \rho(x, t) \ dxdt + \kappa \sum_j \int_0^T q_j(t) \ dt$$

Or discrete versions...

Study case 1

Lyon, France

Study case 1

$$\Delta x \Rightarrow (CFL) \Rightarrow \Delta t$$

versus

$$\Delta t \Rightarrow (CFL) \Rightarrow \Delta x$$

Study case 2

I-80

Bay Area

BHL data – courtesy of FHWA

15 cell averages (number of vehicles)

15 min averages Nb Veh 30 -Space

15 min averages Nb Veh

15 min averages Nb Veh 666.5 667 667.5 668 668.5 669 666 669.5 Space

Inhomogeneous LWR

Inhomogeneous LWR

2 ways of thinking:

• Inhomogeneous term

$$\begin{cases} \partial_t \rho + \partial_x \Phi(\rho,x) = g(x,r) \\ \rho(x,0) = \rho_I(x) \\ \rho(0,t) = \rho_0(t) \text{ and } \rho(L,t) = \rho_L(t) \end{cases}$$
 • Homogeneous PDEs + interface conditions

$$\begin{cases} \partial_t \rho + \partial_x \Phi(\rho, x) = 0 \\ Finite state machine (Free, Congested, Decoupled) \end{cases}$$

Inhomogeneous LWR

- Kruzkov, Bardos-Leroux-Nedelec
- Demand/Supply (Lebacque, Daganzo)
- Discontinuous fluxes (Temple, Towers, Colombo,...)

Riemann solver:

Classification

Finite state machine (Free, Congested, Decoupled)

On/off ramp range default Downstream free flow congestion wave Downstream free flow wave Downstream free flow wave Upstream congestion wave Upstream congestion wave

Inhomogeneous LWR

Why receding horizon control?

1. Freeway management is mostly an optimal allocation problem, not a tracking problem.

2. Hyperbolicity implies some controllability and observability properties that are not suitable for feedback control.

Why receding horizon control?

Why receding horizon control?

Classical optimization loop for PDE:

- Solve the system equation with a candidate
- Solve the adjoint system backwards
- Evaluate the objective gradient and iterate

But some serious issues here:

- What is the linearization of a conservation law?
- How to solve the adjoint system ?

Linearization:

- Godlewski-Raviart, Bardos-Pironneau
- Bressan-Guerra, Bianchini, Colombo
 - Shift differentiability
 - Euler-Lagrange equations

$$L^1(|Du|)$$

Solution structure: well-behaved BV functions

[Di Perna, Dafermos] Solutions are mesure theoretically C^1 with jumps along measure theoretically C^1 surfaces.

Solution structure: well-behaved BV functions

[Di Perna, Dafermos] Solutions are mesure theoretically C^1 with jumps along measure theoretically C^1 surfaces.

Decomposition in absolutely continuous and singular parts

Integration by parts :
$$\Omega = (0)$$

Integration by parts : $\Omega = (0, L) \times (0, T) \subset \mathbb{R}^2$

$$\int_{\Omega} u \cdot \nabla \phi \, d\mathcal{L}^2 = -\int_{\Omega \setminus \cup_i \Gamma_i} \phi \, \operatorname{div} u \, d\mathcal{L}^2 + \int_{\partial \Omega} u \cdot \nu \, \phi \, d\mathcal{H}^1$$
$$+ \sum_{i=1}^{N_s} \int_{t_i^I}^{t_i^F} \dot{s}_i(t) [u_2 \phi]_{|_{x=s_i(t)}} - [u_1 \phi]_{|_{x=s_i(t)}} dt$$

$$\begin{array}{ll} \mathbf{Min} \ \mathcal{J}(y,s,u) &= \mathcal{J}_{\mathrm{obs}}(y) + \mathcal{J}_{\mathrm{s}}(s) + \mathcal{J}_{\mathrm{bar}}(u) \\ &= \int_{\Omega} \mathcal{P}(y) + \sum_{i=1}^{N_s} \int_{t_i}^{T} \mathcal{Q}_i(s_i) + \int_{\Omega} \mathcal{R}(u) \end{array}$$

Subject to
$$\begin{cases} \partial_t y + \partial_x f(y) = g(x, u) \\ y(x, t = 0) = y_I(x) \\ y(0, t) = y_0(t) \text{ and } y(L, t) = y_L(t) \end{cases}$$

where

- $\mathcal{J}_{obs}(y)$ weights the value of the distributed state y
- $\mathcal{J}_{s}(s)$ weights the N_{s} shock locations $s(t) = (s_{1}(t), \ldots, s_{N_{s}}(t))$
- $\mathcal{J}_{\mathrm{bar}}(u)$ weights the control $u=(u_1,...,u_{N_u})\in U_{\mathrm{ad}}$

Weak solution of $\partial_t \tilde{y} + \partial_x (f'(\bar{y})\tilde{y}) = \partial_u g(x, \bar{u})\tilde{u}$

$$\tilde{\mathbf{y}} = \tilde{\mathbf{y}}_{\mathbf{s}} + \sum_{i=1}^{N_{\mathbf{s}}} \kappa_i \delta_{\Gamma_i}$$

with \tilde{y}_s the strong solution of the PDE

$$\begin{cases} \partial_t \tilde{y}_s + \partial_x \big(f'(\bar{y}) \tilde{y}_s \big) = \partial_u g(x, \bar{u}) \tilde{u} \\ \tilde{y}_s|_{t=0} = \tilde{y}_I \\ \tilde{y}_s|_{x=0} = 0 \text{ and } \tilde{y}_s|_{x=L} = 0 \text{ depending on } sign(f'(\bar{y})) \end{cases}$$

and $\kappa_i = -\tilde{s}_i[\bar{y}]_{|_{x=\bar{s}_i(t)}}$, for $i = \{1, \dots, N_s\}$, the solutions of the ODEs $\begin{cases} \frac{d\kappa_i}{dt} = -\left[f'(\bar{y})\tilde{y}_s\right]_{|_{x=\bar{s}_i(t)}} + \dot{\bar{s}}_i[\tilde{y}_s]_{|_{x=\bar{s}_i(t)}} \\ \kappa_i(t_i^!) = 0 \end{cases}$

Relationship with
$$L^1(ert Duert)$$
 ?

Example

Burgers equation with:

$$\begin{cases} y_I = 0.5 - 0.7 \ H(x - 0.5) + 0.4 \sin(2\pi x) \\ y_0(t) = 0.5 \ \text{and} \ y_L(t) = -0.2 \\ \tilde{y}_I = 0.1 \sin(\pi x) \end{cases}$$

PDE & ODE solutions

Absolutely continuous part

Smooth part sensitivity

Singular part

Shock position sensitivity

Rewriting
$$\begin{cases} \frac{\partial_t \tilde{y}_s + \partial_x \alpha(x, t) \tilde{y}_s = \gamma(x, t) \tilde{u}}{\dot{\kappa}_i = -[\alpha(\bar{s}_i(t), t) \tilde{y}_s(\bar{s}_i(t), t)] + \dot{\bar{s}}_i(t) [\tilde{y}_s(\bar{s}_i(t), t)]} \end{cases}$$

The gradients of the cost
$$\mathcal{J} = \int_{\Omega} \mathcal{P}(y) + \sum_{i=1}^{N_s} \int_{t_i}^T \mathcal{Q}_i(s_i) + \int_{\Omega} \mathcal{R}(u)$$
 writes
$$\nabla_u \mathcal{J} = \mathcal{R}'(\bar{u}) + \int_0^L \gamma(x,t) \lambda(x,t) \mathrm{d}x \qquad \text{and} \qquad \nabla_{y_I} \mathcal{J} = \lambda(x,0)$$

with λ and μ the adjoint variables, solution of the coupled problem

$$(ODE - DE)
(ODE - FC)
(PDE - SC)
(PDE - DE)
(PDE - BC)
(PDE - BC)
(PDE - BC)
$$(PDE - BC)
(PDE - BC)
(P$$$$

$$\nabla_u \mathcal{J} = \mathcal{R}'(\bar{u}) + \int_0^L \gamma(x,t) \lambda(x,t) dx \quad \text{and} \quad \nabla_{y_l} \mathcal{J} = \lambda(x,0)$$

Optimal control of I-LWR

Conclusion:

- Formal
- Nice interpretations
- Give some insights on the limitations

Main drawbacks:

- Computationnaly tricky (shock detection)
- No ramp queue model

- Piecewise affine approximation of the fundamental diagram (Front Tracking, CTM)
- « concave » relaxation [Gomes-Horowitz]
- Leads to an LP problem for ramp metering
- Demand/Supply ramp model

Space: 4.5 km

Time: 5 min

Max ramp flow: 1000 veh/h

$$\mathcal{J} = VMT + \kappa .TSV = \sum_{i,k} \phi_i^k . \Delta x_i . \Delta t + \kappa . \sum_j r_j^k . \Delta t$$

VMT + k . TSV

Flow improvement on mainlane

Ramp flow signals

Ramp queues

Instantaneous control leads to a local structure

Local Instantaneous Control (LIC)

Flow improvement = Flow (MPC) - Flow (LIC)

Ramp flow

Ramp queues

