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Renormalization group has played a crucial role in 20th century physics in

two apparently unrelated domains: the theory of fundamental interactions

at the microscopic scale and the theory of continuous macroscopic phase

transitions. In the former framework, it emerged as a consequence of the

necessity of renormalization to cancel infinities that appear in a straight-

forward interpretation of quantum field theory and the possibility to define

the parameters of the renormalized theory at different momentum scales.
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In the statistical physics of phase transitions, a more general renormal-

ization group, based on recursive averaging over short distance degrees of

freedom, was latter introduced to explain the universality properties of con-

tinuous phase transitions.

The field renormalization group now is understood as the asymptotic form

of the general renormalization group in the neighbourhood of the Gaussian

fixed point.

Correspondingly, in the framework of statistical field theories relevant for

simple phase transitions, we review here first the perturbative renormal-

ization group then a more general formulation called functional or exact

renormalization group.
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Press (Oxford 2007).
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Statistical field theory

In the theory of continuous phase transitions, one is interested in the large

distance behaviour or macroscopic properties of physical observables near

the transition temperature T = Tc. At the critical temperature, the correla-

tion length, which defines the scale on which correlations above Tc decay ex-

ponentially, diverges and the correlation functions decay only algebraically.

This gives rise to non-trivial large distance properties that are, to a large

extent, independent of the short distance structure, a property called uni-

versality.

Intuitive arguments indicate that even if the initial statistical model is

defined in terms of random variables associated to the sites of a space lattice,

and taking only a finite set of values (like, e.g., the classical spins of the

Ising model), the large distance behaviour can be inferred from a statistical

field theory in continuum space.



Therefore, we consider a classical statistical system defined in terms of a

random real field φ(x) in continuum space, x ∈ R
d, and a functional measure

on fields of the form e−H(φ)/Z, where H(φ) is called the Hamiltonian in

statistical physics and Z is the partition function (a normalization) given

by the field integral (i.e., a sum over field configurations)

Z =

∫

[dφ(x)] e−H(φ).

The condition of short range interactions in the statistical system translates

into the property of locality of the field theory: H(φ) can be chosen as a

space-integral over a linear combination of monomials in the field and its

derivatives.



We assume also space translation and rotation invariance and, to discuss

a specific example, Z2 reflection symmetry: H(φ)=H(−φ). A typical form

then is

H(φ) =

∫

ddx
[

1
2

(

∂µφ(x)
)2

+ 1
2rφ2(x) +

g

4!
φ4(x) + · · ·

]

.

Finally, the coefficients of H(φ) are regular functions of the temperature T

near the critical temperature Tc. In the low temperature phase T < Tc, the

Z2 symmetry is spontaneously broken.



Correlation functions

Physical observables involve field correlation functions (generalized mo-

ments),

〈φ(x1)φ(x2) . . . φ(xn)〉 ≡ 1

Z

∫

[dφ(x)]φ(x1)φ(x2) . . . φ(xn) e−H(φ).

They can be derived by functional differentiation from the generating func-

tional (generalized partition function) in an external field H(x),

Z(H) =

∫

[dφ(x)] exp

[

−H(φ) +

∫

ddx H(x)φ(x)

]

,

as

〈φ(x1)φ(x2) . . . φ(xn)〉 =
1

Z(0)

δ

δH(x1)

δ

δH(x2)
. . .

δ

δH(xn)
Z(H)

∣

∣

∣

∣

H=0

.



Connected correlation functions

The more relevant physical observables are the connected correlation func-

tions W (n)(x1, x2, . . . , xn) (generalized cumulants), which can be obtained

by function differentiation from the free energy W(H) = lnZ(H) in the

external field H:

W (n)(x1, x2, . . . , xn) =
δ

δH(x1)

δ

δH(x2)
. . .

δ

δH(xn)
W(H)

∣

∣

∣

∣

H=0

.

Due to translation invariance,

W (n)(x1, x2, . . . , xn) = W (n)(x1 + a, x2 + a, . . . , xn + a)

for any vector a.

Connected correlation functions have the so-called cluster property: if one

separates the points x1, . . . , xn in two non-empty sets, connected functions

go to zero when the distance between the two sets goes to infinity. It is the

large distance behaviour of connected correlation functions in the critical

domain near Tc that may exhibit universal properties.



The renormalization group: General formulation

To construct an RG flow, the basic idea is to integrate in the field integral

recursively over short distance degrees of freedom. This leads to the defi-

nition of an effective Hamiltonian Hλ function of a scale parameter λ > 0

(such that H1 = H) and of a transformation T in the space of Hamiltonians

such that

λ
d

dλ
Hλ = T [Hλ] , (1)

an equation called RG equation (RGE). The appearance of the derivative

λd/dλ = d/d lnλ reflects the multiplicative character of dilatations. The

RGE thus defines a dynamical process in the “time” lnλ. The denomination

renormalization group (RG) refers to the property that lnλ belongs to the

additive group of real numbers.



RG equation: General structure, fixed points

We will derive RGE that define a stationary Markov process, that is, T [Hλ]

depends on Hλ but not on the trajectory that has led from Hλ=1 to Hλ,

and depends on λ only through Hλ.

Universality is then related to the existence of fixed points, solution of

T (H∗) = 0 .

We assume also that the mapping T is differentiable, so that near a fixed

point the RG flow can be linearized,

T (H∗ + ∆Hλ) ∼ L∗∆Hλ ,

and is governed by the eigenvalues and eigenvectors of the linear operator

L∗. Formally, the solution of the linearized equations can be written as

Hλ = H∗ + λL∗

(Hλ=1 −H∗) .



The Gaussian measures

In the spirit of the central limit theorem of probabilities, one could hope that

the universal properties of phase transitions can be described by Gaussian

or weakly perturbed Gaussian measures. The simplest form satisfying all

conditions in d space dimensions (we assume d ≥ 2), corresponds to the

quadratic Hamiltonian (α0 ≥ 0 constant)

H(0)(φ) =

∫

ddx
[

1
2

(

∇xφ(x)
)2

+ 1
2α0φ

2(x)
]

. (2)

One sees immediately that the Gaussian model can only describe the high

temperature phase T ≥ Tc.

In a Gaussian model, all correlation functions can be expressed in terms

of the two-point function with the help of Wick’s theorem.



Regularization

However, with this Hamiltonian the Gaussian model has a problem: too

singular fields contribute to the field integral in such a way that correlation

functions at coinciding points are not defined. For example,

〈

φ2(x)
〉

= W (2)(0, 0) =
1

(2π)d

∫

ddp

p2 + α0
,

which diverges in any space dimension d ≥ 2. In particular, expectation

values of perturbations to the Gaussian theory of the form φm(x) (powers

of the field at the same point) are not defined.

Thus, it is necessary to modify the Gaussian measure to restrict the field

integration to more regular fields, continuous to define powers of the field,

satisfying differentiability conditions to define expectation values of the field

and its derivatives taken at the same point, a procedure called regulariza-

tion.



This can be achieved by adding to

H(0)(φ) =

∫

ddx
[

1
2

(

∇xφ(x)
)2

+ 1
2α0φ

2(x)
]

,

enough terms with more derivatives (here, periodic boundary conditions

are assumed)

H(0)(φ) 7→ HG(φ) = H(0)(φ) +
1

2

2kmax
∑

k=2

αk

∫

ddx φ(x)∇2k
x φ(x), (3)

where the coefficient αk are only constrained by the positivity of the Hamil-

tonian. For example, simple continuity requires 2kmax > d.



The Gaussian two-point function at large distance

The two-point function then reads

W (2)(x, 0) =
1

(2π)d

∫

ddp eipx

α0 + p2 +
∑

k=2 αkp2k
.

At large distance |x| → ∞, for α0 6= 0, correlations decrease exponentially

as

W (2)(x, 0) ∝ 1

|x|(d−1)/2
e−|x|/ξ,

where ξ is the correlation length and

ξ ∝ 1/
√

α0 for α0 → 0 .

At the critical point (T = Tc), the correlation length diverges, which implies

α0 = 0 and, for d > 2, one finds the algebraic critical behaviour

W (2)(x, 0) ∝
|x|→∞

1

|x|d−2
.

For d = 2, the Gaussian model is not defined at Tc.



The Gaussian fixed point

An RG can be constructed that reproduces the properties of the Gaussian

models. The Hamiltonian flow can be implemented by the simple scaling

φ(x) 7→ λ(2−d)/2φ(x/λ). (4)

After the change of variables x′ = x/λ, one verifies that the Hamiltonian

H∗
G(φ) =

1

2

∫

ddx
(

∇xφ(x)
)2

, (5)

corresponding to the critical Gaussian model, is invariant. The RG has H∗
G

as a fixed point. The Hamiltonian flow (4) corresponds in fact to the linear

approximation of the general RG near the Gaussian fixed point.



The linearized RG flow

The transformation (4) generates the linearized RG flow at the Gaussian

fixed point. Eigenvectors of the linear flow (4) are monomials of the form

On,k(φ) =

∫

ddx On,k(φ, x),

where On,k(φ, x) is a product of powers of the field and its derivatives at

point x with 2n powers of the field (reflection Z2 symmetry) and 2k powers

of ∂µ.

Their RG behaviour under the transformation (4) is then given by a

simple dimensional analysis. One defines the dimension of x as -1 and the

(Gaussian) dimension of the field is [φ] = (d − 2)/2. The dimension [On,k]

of On,k is then

[On,k] = −d + n(d − 2) + 2k . (6)

It can be verified that On,k scales like λ−[On,k], and the corresponding

eigenvalue of L∗ thus is ℓn,k = −[On,k].



Discussion

When λ → +∞,

(i) for ℓn,k > 0 the amplitude of On,k(φ) increases; it is a direction of

instability and in the RG terminology On,k(φ) is a relevant perturbation;

(ii) for ℓn,k < 0, the amplitude of On,k(φ) decreases; it is a direction of

stability and On,k(φ) is an irrelevant perturbation;

(iii) in the special case ℓn,k = 0, one speaks of a marginal perturbation and

the linear approximation is no longer sufficient to discuss stability. Loga-

rithmic behaviour in λ is then expected (we omit here unphysical redundant

perturbations).

Since ℓ1,0 = 2,
∫

ddx φ2(x) corresponds always to a direction of instability:

indeed it induces a deviation from the critical temperature and thus a finite

correlation length.

For d > 4, no other perturbation is relevant and the Gaussian fixed point

is stable on the critical surface (ξ = ∞).



Since ℓ2,0 = 4− d, at d = 4 one term becomes marginal:
∫

ddx φ4(x), which

below dimension four becomes relevant. In dimension d = 4 − ε, ε > 0

small (a notion we define later), it is the only relevant perturbation and one

expects to be able to describe critical properties with a Gaussian theory to

which this unique term is added.

To summarize, for systems with a Z2 or, more generally, with an O(N)

symmetry, one concludes that

(i) the Gaussian fixed point is stable above space dimension four;

(ii) from a next order analysis, one shows that it is marginally stable in

dimension four;

(iii) it is unstable below dimension four.



Rescaling

If what follows, we assume that initially the statistical system is very close

to the Gaussian fixed point. The RG flow is then first governed by the local

linear flow. Therefore, we implement first the corresponding RG transfor-

mation. We introduce a parameter Λ ≫ 1 and substitute

φ(x) 7→ Λ(2−d)/2φ(x/Λ).

After the change of variables x′ = x/Λ, a monomial On,k(φ) is multiplied

by Λ−[On,k], where [On,k] is the dimension in the sense of the linearized

RG. In the quantum field theory language, this could be called a Gaussian

renormalization. The Gaussian RG dimensions can then be expressed in

terms of Λ: space coordinates x have dimension Λ−1, derivatives dimension

Λ and the field dimension Λ(d−2)/2. The Hamiltonian is dimensionless.

In the context of quantum field theory, since the regularization has the

effect, in Fourier representation, to suppress the contributions of momenta

|p| ≫ Λ in Feynman graphs, Λ is called the cut-off.



Statistical scalar field theory: Perturbation theory

The Gaussian model

After rescaling, the Hamiltonian of the Gaussian model takes the form

HG(φ) =
1

2

∫

ddx

[

(

∇xφ(x)
)2

+ α0Λ
2φ2(x) +

∑

k=2

αkΛ2−2kφ(x)∇2k
x φ(x)

]

,

(7)

where α0 is the amplitude of the only relevant term for d > 4. Except

for the two-point function at coinciding points, one can take the Λ → ∞
limit. However, for α0 6= 0, to obtain a non-trivial universal large distance

behaviour, it is also necessary to compensate the RG flow by choosing α0

infinitesimal, taking the Λ → ∞ limit at r = α0Λ
2 fixed (r is a Gaussian

renormalized parameter in quantum field theory language). This defines the

critical domain.



The perturbed Gaussian or quasi-Gaussian model

To allow for spontaneous symmetry breaking and, thus, to be able to de-

scribe physics below Tc, terms have necessarily to be added to the Gaussian

Hamiltonian to generate a double-well potential for constant fields. The

minimal addition, and the leading term from the RG viewpoint, is of φ4

type. This leads to

H(φ) = HG(φ) +
g

4!
Λ4−d

∫

ddx φ4(x), g ≥ 0 .

The φ4 term generates a shift of the critical temperature. To recover a

critical theory (T = Tc), it is necessary to choose a φ2 term with a specific

g-dependent coefficient 1
2 (α0)c(g), a mass renormalization in quantum field

theory terminology.

As we have explained, for d > 4 the φ4 term then is an irrelevant con-

tribution that does not invalidate the universal predictions of the Gaussian

model.



Corrections to the Gaussian theory can be obtained by expanding in powers

of the coefficient g.

Setting u = gΛ4−d, the partition function, for example, is then given by

Z =

∞
∑

k=0

(−u)k

(4!)kk!

〈

(∫

ddx φ4(x)

)k
〉

G

.

The Gaussian expectations values 〈•〉G can then be evaluated in terms of

the Gaussian two-point function with the help of Wick’s theorem (Feynman

graph expansion).

By contrast, for any d < 4, the φ4 contribution is relevant: the Gaussian

fixed point is unstable and no longer governs the large distance behaviour.

The perturbative expansion of the critical theory (T = Tc) in powers of u

contains so-called infra-red, that is, long distance, or zero momentum in

Fourier space, divergences.



Renormalization group in dimension d = 4 − ε

For d < 4, to determine the large distance behaviour of correlation functions,

it becomes necessary to construct a general renormalization group: this

leads to functional equations that we describe later, but which, in general,

unfortunately cannot be solved analytically.

However, a trick has been discovered to extend the definition of all terms

of the perturbative expansion to arbitrary complex values of the dimension

d in the form of meromorphic functions.

This allows replacing, in dimension d = 4 − ε and in the framework of

an expansion in powers of ε, the general renormalization group by a much

simpler asymptotic form and studying the model analytically.



Dimensional continuation and regularization

To discuss dimensional continuation, it is convenient to introduce the Fourier

representation of correlation functions. Taking into account translation in-

variance, one defines

(2π)dδ(d)

(

n
∑

i=1

pi

)

W̃ (n)(p1, . . . , pn)

=

∫

ddx1 . . .ddxn W (n)(x1, . . . , xn) exp



i

n
∑

j=1

xjpj



 , (8)

where, in analogy with quantum mechanics, the Fourier variables pi are

called momenta (and have dimension Λ). We also introduce the Fourier

representation of the two-point function (or propagator) ∆(x), correspond-

ing to the Hamiltonian of the Gaussian model,

∆(x) ≡ 〈φ(x)φ(0)〉G =
1

(2π)d

∫

ddp e−ipx∆̃(p).



Dimensional continuation

A general representation useful for dimensional continuation of the Gaussian

two-point function is the Laplace representation

∆̃(p) =

∫ ∞

0

ds ρ(sΛ2)e−sp2

, (9)

where the function ρ(s) → 1 when s → ∞.

Moreover, to reduce the field integration to continuous fields and, thus,

to render the perturbative expansion finite, one needs at least ρ(s) = O(sq)

with q > (d − 2)/2 for s → 0.

If, in addition, one wants the expectation values of all local polynomials

to be defined, one must impose to ρ(s) to converge to zero faster than any

power.



A contribution to perturbation theory (represented graphically by a Feyn-

man diagram) takes, in Fourier representation, the form of a product of

propagators integrated over a subset of momenta. With the Laplace rep-

resentation, all momentum integrations become Gaussian and can be per-

formed, resulting in explicit analytic meromorphic functions of the dimen-

sion parameter d. For example, the contribution of order g to the two-point

function is proportional to

Ωd =
1

(2π)d

∫

dp ∆̃(p) =
1

(2π)d

∫

dp

∫ ∞

0

ds ρ(sΛ2)e−sp2

=
1

(4π)d/2

∫ ∞

0

ds s−d/2ρ(sΛ2),

which, in the latter form, is holomorphic for 2 < Re d < 2(1 + q).



Dimensional regularization

For the theory of critical phenomena, dimensional continuation is sufficient

since it allows exploring the neighbourhood of dimension four, determining

fixed points and calculating universal quantities as ε = (4 − d)-expansions.

However, for practical calculations, but then restricted to the leading

large distance behaviour, an additional step is extremely useful. It can be

verified that if one decreases Re d enough, so that by naive power counting

all momentum integrals are convergent, one can, after explicit dimensional

continuation, take the infinite Λ limit. The resulting perturbative contri-

butions become meromorphic functions with poles at dimensions at which

large momentum, and low momentum in the critical theory, divergences

appear. This method of regularizing large momentum divergences is called

dimensional regularization and is extensively used in quantum field the-

ory. In the theory of critical phenomena, it has also been used to calculate

universal quantities like critical exponents, as ε = (4 − d)-expansions.



Perturbative renormalization group

The renormalization theorem

The perturbative renormalization group, as it has been developed in the

framework of the perturbative expansion of quantum field theory, relies on

the so-called renormalization theory. For the φ4 field theory it has been

first formulated in space dimension d = 4. For critical phenomena, a small

extension is required that involves an additional expansion in powers of

ε = 4 − d, after dimensional continuation.

To formulate the renormalization theorem, one introduces a momentum

µ, called the renormalization scale, and a parameter gr characterizing the

effective φ4 coefficient at scale µ, called the renormalized coupling constant.



One can then find two dimensionless functions Z(Λ/µ, g) and Zg(Λ/µ, g)

that satisfy (g and Λ/µ are the only two dimensionless combinations)

Λ4−dg = µ4−dZg(Λ/µ, g)gr = µ4−dgr +O(g2), Z(Λ/µ, g) = 1+O(g), (10)

calculable order by order in a double series expansion in powers of g and

ε, such that all connected correlations functions

W̃ (n)
r (pi; gr, µ, Λ) = Z−n/2(g, Λ/µ)W̃ (n)(pi; g, Λ), (11)

called renormalized, have, order by order in gr, finite limits W̃
(n)
r (pi; gr, µ)

when Λ → ∞ at pi, µ, gr fixed.

The renormalization constant Z1/2(Λ/µ, g) is the ratio between the renor-

malization in presence of the φ4 interaction and the Gaussian field renor-

malization Λ(d−2)/2.



Remarks

There is some arbitrariness in the choice of the renormalization constants

Z and Zg since they can be multiplied by arbitrary functions of gr. The

constants can be completely determined by imposing three renormalization

conditions to the renormalized correlation functions, which are then inde-

pendent of the specific choice of the regularization. This a first important

result: since initial and renormalized correlation functions have the same

large distance behaviour, this behaviour is to a large extent universal since

it can, therefore, only depend at most on one parameter, the φ4 coefficient

g.



Critical RG equations

From the relation between initial and renormalized functions (equation (11))

and the existence of a limit Λ → ∞, a new equation follows, obtained by

differentiation of the equation with respect to Λ at µ, gr fixed:

Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ fixed

Zn/2(g, Λ/µ)W̃ (n)(pi; g, Λ) → 0 . (12)

In agreement with the perturbative philosophy, one then neglects all contri-

butions that, order by order, decay as powers of Λ. One defines asymptotic

functions W̃
(n)
as. (pi; g, Λ) and Zas.(g, Λ/µ) as sums of the perturbative con-

tributions to the functions W̃ (n)(pi; g, Λ) and Z(g, Λ/µ), respectively, that

do not go to zero when Λ → ∞. Using the chain rule, one derives from

equation (12)
[

Λ
∂

∂Λ
+ β(g, Λ/µ)

∂

∂g
+

n

2
η(g, Λ/µ)

]

W̃ (n)
as. (pi; g, Λ) = 0 .



The functions β and η are defined by

β(g, Λ/µ) = Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ

g , η(g, Λ/µ) = −Λ
∂

∂Λ

∣

∣

∣

∣

gr,µ

lnZas.(g, Λ/µ).

Since the functions W̃
(n)
as. do not depend on µ, the functions β and η cannot

depend on Λ/µ, and one finally obtains the RG equations (Zinn-Justin

1973):
(

Λ
∂

∂Λ
+ β(g)

∂

∂g
+

n

2
η(g)

)

W̃ (n)
as. (pi; g, Λ) = 0 . (13)

From equation (10), one immediately infers that β(g) = −εg + O(g2).



RG equations in the critical domain above Tc

Correlation functions may also exhibit universal properties near Tc when

the correlation length ξ is large in the microscopic scale, here, ξΛ ≫ 1. To

describe universal properties in the critical domain above Tc, one adds the

φ2 relevant term to the Hamiltonian:

Ht(φ) = H(φ) +
t

2

∫

ddx φ2(x),

where t, the coefficient of φ2, characterizes the deviation from the criti-

cal temperature: t ∝ T − Tc. The renormalization theorem leads to the

appearance of a new renormalization factor Z2(Λ/µ, g) associated with the

parameter t. By arguments of the same nature as in the critical theory, one

derives a more general RGE of the form (Zinn-Justin 1973)
[

Λ
∂

∂Λ
+ β(g)

∂

∂g
+

n

2
η(g) − η2(g)t

∂

∂t

]

W̃ (n)
as. (pi; t, g, Λ) = 0 , (14)

where a new RG function η2(g), related to Z2(Λ/µ, g), appears.



These equations can be further generalized to deal with an external field

(a magnetic field for magnetic systems) and the corresponding induced field

expectation value (magnetization for magnetic systems).

Renormalized RG equations

For d = 4− ε, if one is only interested in the leading scaling behaviour (and

the first correction), it is technically simpler to use dimensional regular-

ization and the renormalized theory in the so-called minimal (or modified

minimal) subtraction scheme. The relation (11) between initial and renor-

malized correlation functions is asymptotically symmetric. One thus derives

also (for the critical theory)
(

µ
∂

∂µ
+ β̃(gr)

∂

∂gr
+

n

2
η̃(gr)

)

W̃ (n)
r (pi, gr, µ) = 0

with the definitions

β̃(gr) = µ
∂

∂µ

∣

∣

∣

∣

g

gr , η̃(gr) = µ
∂

∂µ

∣

∣

∣

∣

g

lnZ(gr, ε) .



In this scheme, the renormalization constants (10) are obtained by going

to low dimensions where the infinite Λ limit, at gr fixed, can be taken. For

example,

lim
Λ→∞

Z(Λ/µ, g)|gr fixed = Z(gr, ε).

Then, order by order in powers of gr, they have a Laurent expansion in

powers of ε. In the minimal subtraction scheme, the freedom in the choice

of the renormalization constants is used to reduce the Laurent expansion to

the singular terms. For example, Z(gr, ε) takes the form

Z(gr, ε) = 1 +
∞
∑

n=1

σn(gr)

εn
with σn(gr) = O(gn+1

r ).

A remarkable consequence is that the RG functions η̃(gr), and η̃2(gr)

when a φ2 term is added, become independent of ε and β̃(gr) has the simple

dependence β̃(gr) = −εgr+β̃2(gr), where β̃2(gr) = O(g2
r ) is also independent

of ε.



Solution of the RG equations: The epsilon-expansion

RG equations can be solved by the method of characteristics. In the simplest

example of the critical theory, one introduces a scale parameter λ and two

functions of g(λ) and ζ(λ) defined by

λ
d

dλ
g(λ) = −β

(

g(λ)
)

, g(1) = g , λ
d

dλ
ln ζ(λ) = −η

(

g(λ)
)

, ζ(1) = 1 .

(15)

The function g(λ) is the effective coefficient of the φ4 term at the scale λ.

One verifies that equation (13) is then equivalent to

λ
d

dλ

[

ζn/2(λ)W̃ (n)
as.

(

pi; g(λ), Λ/λ
)

]

= 0 ,

which implies (Λ 7→ λΛ)

W̃ (n)
as.

(

pi; g, λΛ
)

= ζn/2(λ)W̃ (n)
as.

(

pi; g(λ), Λ
)

.



From its definition, one infers that W̃
(n)
as. has dimension (d − (d + 2)n/2).

Therefore,

W̃ (n)
as.

(

pi/λ; g, Λ
)

= λ(d+2)n/2−dW̃ (n)
as.

(

pi; g, λΛ
)

= λ(d+2)n/2−dζn/2(λ)W̃ (n)
as.

(

pi; g(λ), Λ
)

.

These equations show that here the general Hamiltonian flow reduces here

to the flow of g(λ) and, thus, the large distance behaviour is governed by

the zeros of the function β(g). When λ → ∞, since β(g) = −εg + O(g2),

if g > 0 is initially very small, it moves away from the unstable Gaussian

fixed point, in agreement with the general RG analysis.



If one assumes the existence of another zero g∗ with then β′(g∗) > 0, then

g(λ) will converge toward this fixed point. Since g(λ) tends toward the fixed

point value g∗, and if η(g∗) ≡ η is finite, one finds the universal behaviour

W̃ (n)
as.

(

pi/λ; g, Λ
)

∝
λ→∞

λ(d+2−η)n/2−dW̃ (n)
as.

(

pi; g
∗, Λ

)

.

For the connected correlation functions in space, this result translates into

W (n)
as.

(

λxi; g, Λ
)

∝
λ→∞

λ−n(d−2+η)/2W (n)
as.

(

xi; g
∗, Λ

)

,

for all xi distinct.

The exponent dφ = (d− 2+ η)/2 is the dimension of the field φ, from the

point of view of large distance properties.



Explicit calculations

From the perturbative calculation of the two- and four-point functions at

one-loop order, one derives

β(g) = −εg +
3

16π2
g2 + O(g3, εg2).

In the sense of an ε-expansion, β(g) has a zero g∗ with a positive slope

(Wilson–Fisher 1972)

g∗ =
16π2ε

3
+ O(ε2), ω = β′(g∗) = ε + O(ε2),

which governs the large momentum behaviour of correlation functions.

In addition, the exponent ω governs the leading correction to the critical

behaviour.



Generalization

The results obtained for models with a Z2 reflection symmetry can easily

be generalized to N -vector models with O(N) orthogonal symmetry, which

belong to different universality classes. Their universal properties can then

be derived from an O(N) symmetric field theory with an N -component field

φ(x) and a g(φ2)2 quartic term. Further generalizations involve theories

with N -component fields but smaller symmetry groups, such that several

independent quartic φ4 terms are allowed. The structure of fixed points

may then be more complicate.

Finally, correlation functions of the O(N) model can be evaluated in the

large N limit explicitly and the predictions of the ε-expansion can then be

verified.



Epsilon-expansion: A few results

From the simple existence of the fixed point and of the corresponding ε-

expansion, universal properties of a large class of critical phenomena can be

proved to all orders in ε: this includes relations between critical exponents,

scaling behaviour of correlation functions or the equation of state.

Moreover, universal quantities can then be calculated as ε-expansions.

The scaling equation of state

An example of the general results that can be obtained is provided by the

equation of state of magnetic systems, that is, the relation between applied

magnetic field H, magnetization M and temperature T . In the relevant

limit |H| ≪ 1, |T − Tc| ≪ 1, RG has proved Widom’s conjectured scaling

form

H = Mδf
(

(T − Tc)/M
1/β
)

,

where f(z) is a universal function (up to normalizations).



Moreover, the exponents satisfy the relations

δ =
d + 2 − η

d − 2 + η
, β = 1

2ν(d − 2 + η),

where ν, the correlation length exponent, given by ν = 1/
(

η2(g
∗) + 2

)

,

characterizes the divergence ξ of the correlation length at Tc:

ξ ∝ |T − Tc|−ν .

Other relations can be derived, involving the magnetic susceptibility expo-

nent γ characterizing the divergence of the two-point correlation function

at zero momentum at Tc, or the exponent α characterizing the behaviour

of the specific heat:

γ = ν(2 − η), α = 2 − νd .

Note the relations involving the dimension d explicitly are not valid for the

Gaussian fixed point.



Critical exponents as ε-expansions

As an illustration, we give here two successive terms of the ε-expansion of

the exponents η, γ and ω for the O(N) models, although the RG functions

of the (φ2)2 field theory are known to five-loop order and, thus, the critical

exponents are known up to ε5. In terms of the variable v = Ndg where Nd

is the loop factor

Nd = 2/(4π)d/2Γ(d/2),

the RG functions β(v) and η2(v) at two-loop order, η(v) at three-loop order

are

β(v) = −εv +
(N + 8)

6
v2 − (3N + 14)

12
v3 + O(v4),

η(v) =
(N + 2)

72
v2

[

1 − (N + 8)

24
v

]

+ O(v4),

η2(v) = − (N + 2)

6
v

[

1 − 5

12
v

]

+ O(v3).



The fixed point value solution of β(v∗) = 0 is then

v∗(ε) =
6ε

(N + 8)

[

1 +
3(3N + 14)

(N + 8)2
ε

]

+ O(ε3).

The values of the critical exponents

η = η(v∗), γ =
2 − η

2 + η2(v∗)
, ω = β′(v∗),

follow

η =
ε2(N + 2)

2(N + 8)2

[

1 +
(−N2 + 56N + 272)

4(N + 8)2
ε

]

+ O(ε4),

γ = 1 +
(N + 2)

2(N + 8)
ε +

(N + 2)

4(N + 8)3
(

N2 + 22N + 52
)

ε2 + O(ε3),

ω = ε − 3(3N + 14)

(N + 8)2
ε2 + O(ε3).



Though this may not be obvious on these few terms, the ε-expansion is

divergent for any ε > 0, as large order estimates based on instanton cal-

culus have shown. Extracting precise numbers from the known terms of

the series requires a summation method. For example, adding simply the

known successive terms for ε = 1 and N = 1 yields

γ = 1.000 . . . , 1.1666 . . . , 1.2438 . . . , 1.1948 . . . , 1.3384 . . . , 0.8918 . . . ,

while the best field theory estimate is γ = 1.2396 ± 0.0013.



Summation of the ε-expansion and numerical values of exponents

We display below (Table 1) the results for some critical exponents of the

O(N) model obtained from Borel summation of the ε-expansion (Guida

and Zinn-Justin 1998). Due to scaling relations like γ = ν(2 − η), γ +

2β = νd, only two among the first four are independent, but the series

are summed independently to check consistency. N = 0 corresponds to

statistical properties of polymers (mathematically the self-avoiding random

walk), N = 1, the Ising universality class, to liquid-vapour, binary mixtures

or anisotropic magnet phase transitions. N = 2 describes the superfluid

Helium transition, while N = 3 correspond to isotropic ferromagnets.

As a comparison, we also display (Table 2) the best available field theory

results obtained from Borel summation of d = 3 perturbative series (Guida

and Zinn-Justin 1998).



Table 1

Critical exponents of the O(N) model, d = 3, obtained from the ε-expansion.

N 0 1 2 3

γ 1.1571 ± 0.0030 1.2355 ± 0.0050 1.3110 ± 0.0070 1.3820 ± 0.0090

ν 0.5878 ± 0.0011 0.6290 ± 0.0025 0.6680 ± 0.0035 0.7045 ± 0.0055

η 0.0315 ± 0.0035 0.0360 ± 0.0050 0.0380 ± 0.0050 0.0375 ± 0.0045

β 0.3032 ± 0.0014 0.3265 ± 0.0015 0.3465 ± 0.0035 0.3655 ± 0.0035

ω 0.828 ± 0.023 0.814 ± 0.018 0.802 ± 0.018 0.794 ± 0.018



Table 2

Critical exponents of the O(N) model, d = 3, obtained from the (φ2)23 field theory.

N 0 1 2 3

g∗

Ni 1.413 ± 0.006 1.411 ± 0.004 1.403 ± 0.003 1.390 ± 0.004

γ 1.1596 ± 0.0020 1.2396 ± 0.0013 1.3169 ± 0.0020 1.3895 ± 0.0050

ν 0.5882 ± 0.0011 0.6304 ± 0.0013 0.6703 ± 0.0015 0.7073 ± 0.0035

η 0.0284 ± 0.0025 0.0335 ± 0.0025 0.0354 ± 0.0025 0.0355 ± 0.0025

β 0.3024 ± 0.0008 0.3258 ± 0.0014 0.3470 ± 0.0016 0.3662 ± 0.0025

ω 0.812 ± 0.016 0.799 ± 0.011 0.789 ± 0.011 0.782 ± 0.0013



Functional (or exact) renormalization group

We now briefly describe a general approach to the RG close to ideas ini-

tially developed by Wegner and Wilson, and based on a partial integration

over the large-momentum modes of fields. This RG takes the form of func-

tional renormalization group (FRG) equations that express the equivalence

between a change of a scale parameter related to microscopic physics and a

change of the parameters of the Hamiltonian. Some forms of these equations

are exact and one then also speaks of the exact renormalization group.

These FRG equations have been used to recover the first terms of the

ε-expansion and later by Polchinski to give a new proof of the renormaliz-

ability of field theories, avoiding any argument based on Feynman diagrams

and combinatorics.

From the practical viewpoint, several variants of these FRG equations

have led to new approximation schemes no longer based on the standard

perturbative expansion.



Technically, these FRG equations follow from identities that express the

invariance of the partition function under a correlated change of the propa-

gator and the other parameters of the Hamiltonian. We discuss these equa-

tions, in continuum space, in the framework of local statistical field theory.

It is easy to verify that, except in the Gaussian case, these equations are

closed only if an infinite number of local interactions are included.

It is then possible to infer various RGE satisfied by correlation functions.

Depending on the chosen form, these RGE are either exact or only exact

at large distance or small momenta, up to corrections decaying faster than

any power of the dilatation parameter.

Here, we discuss only the Hamiltonian flow, the RGE for correlation func-

tions requiring some additional considerations.



Partial field integration and effective Hamiltonian

Using identities that involve only Gaussian integrations, one first proves

equality between two partition functions corresponding to two different

Hamiltonians. This relation can then be interpreted as resulting from a par-

tial integration over some components of the fields. One infers a sufficient

condition for correlated modifications of the propagator and interactions, in

a statistical field theory, to leave the partition function invariant.

In what follows, we assume that the field theory is translation invariant.

Moreover, all Gaussian two-point functions, or propagators, ∆(x − y) are

such that in the Fourier representation

∆(x) =
1

(2π)d

∫

ddp eipx ∆̃(p),

∆̃(p) decreases faster than any power for |p| → ∞ so that the Gaussian

expectation value of any local polynomials in the field exists.



Partial integration

One first establishes a relation between partition functions corresponding

to two different local Hamiltonians in d space dimensions.

The first Hamiltonian depends on a field φ and we write it in the form

H1(φ) =
1

2

∫

dx dy φ(x)K1(x − y)φ(y) + V1(φ), (16)

where K1 is a positive operator and the functional V1(φ) is expandable

in powers of the field φ, local and translation invariant. To the explicit

quadratic part is associated the propagator ∆1,
∫

dz K1(x − z)∆1(z − y) = δ(x − y).

The second Hamiltonian depends on two fields φ1, φ2 in the form

H(φ1, φ2) =
1

2

∫

dx dy [φ1(x)K2(x − y)φ1(y) + φ2(x)K(x − y)φ2(y)]

+ V1(φ1 + φ2).



Again, we define
∫

dz K2(x − z)∆2(z − y) = δ(x − y),

∫

dz K(x − z)D(z − y) = δ(x − y).

The kernels K1, K2 and K are positive, which is a necessary condition for

the field integrals to exist, at least in a perturbative sense. Moreover, the

properties of the propagators ∆1, ∆2 and D (thus also positive) ensures

the existence of a formal expansion of the field integrals in powers of the

interaction V1.

Then, if ∆1 = ∆2 + D ⇒ K1 = K2(K2 + K)−1K, the ratio of the

partition functions

Z1 =

∫

[dφ] e−H1(φ) and Z2 =

∫

[dφ1 dφ2] e
−H(φ1,φ2) (17)

does not depend on V1:

Z2 =

(

det(D∆2)

det ∆1

)1/2

Z1 . (18)



Another form of the identity. In what follows, we use the compact nota-

tion ∫

dx dy φ(x)K(x − y)φ(y) ≡ (φKφ).

We define

e−V2(φ) = (detD)−1/2

∫

[dϕ] exp
[

−1
2 (ϕKϕ) − V1(φ + ϕ)

]

, (19)

as well as H2(φ) = 1
2 (φK2φ)+V2(φ). Then, the equivalence takes the more

interesting form
∫

[dφ] e−H2(φ) =

(

det ∆2

det ∆1

)1/2 ∫

[dφ] e−H1(φ) . (20)

The left hand side can be interpreted as resulting from a partial integration

over the field φ since the propagator D is positive and, thus, in the sense of

operators, ∆2 < ∆1.



Differential form

We now assume that the propagator ∆ is a function of a real parameter s:

∆ ≡ ∆(s). Moreover, ∆(s) is a smooth function with a negative derivative.

We define

D(s) =
d∆(s)

ds
< 0 ,

where D(s) is represented by the kernel D(s; x − y).

For s < s′, we identify

∆1 = ∆(s), ∆2 = ∆(s′) and thus D(s, s′) = ∆(s) − ∆(s′) > 0 . (21)

Similarly,

K1 = K(s) = ∆−1(s), K2 = K(s′), K(s, s′) = [D(s, s′)]
−1

> 0 . (22)

Since the kernels K(s), K(s, s′) are positive, all Gaussian integrals are

defined.



Finally, we set

V1(φ) = V(φ, s), V2(φ) = V(φ, s′), H1(φ) = H(φ, s), H2(φ) = H(φ, s′).

The equivalence then takes the form

∫

[dφ] e−H(φ,s′) =

(

det∆(s′)

det ∆(s)

)1/2 ∫

[dφ] e−H(φ,s),

where V(φ, s′) is given by

e−V(φ,s′) =
(

detD(s, s′)
)−1/2

∫

[dϕ] exp
[

−1
2

(

ϕK(s, s′)ϕ
)

− V(φ + ϕ, s)
]

.

(23)



Differential form

Setting s′ = s + σ, σ > 0, one expands in powers of σ → 0. Identifying

the terms of order σ, after some algebraic manipulations one obtains the

functional equation

d

ds
V(φ, s) = −1

2

∫

dx dy D(s; x − y)

[

δ2V
δφ(x)δφ(y)

− δV
δφ(x)

δV
δφ(y)

]

. (24)

The equation expresses a sufficient condition for the partition function

Z(s) = (det∆(s))−1/2
∫

[dφ] e−H(φ,s) with

H(φ, s) = 1
2 (φK(s)φ) + V(φ, s), (25)

to be independent of the parameter s.

This property relates a modification of the propagator to a modification

of the interaction, quite in the spirit of the RG.



Remark.

(i) A sufficient condition for Z(s) to be independent of s, is that the

equation is satisfied as an expectation value with the measure e−H(φ,s).

One can thus add to the equation contributions with vanishing expectation

value to derive other sufficient conditions (useful for correlation functions).

(ii) Let us set

Σ(φ, s) = e−V(φ,s) .

Then, the functional equation reduces to

d

ds
Σ(φ, s) = −1

2

∫

dx dy D(s; x − y)
δ2Σ(φ, s)

δφ(x)δφ(y)
.

This a functional heat equation since the kernel −D is positive. One may

wonder why we do not consider this equation, which is linear and thus

much simpler. The reason is that, in contrast to Σ(φ, s), V(φ, s) is a local

functional, a property that plays an essential role.



Hamiltonian evolution

From the evolution equation, for V(φ, s) one then infers the evolution of the

Hamiltonian

H(φ, s) = 1
2 (φK(s)φ) + V(φ, s).

Introducing the operator L(s), with kernel L(s; x − y), defined by

L(s) ≡ D(s)∆−1(s) =
d ln ∆(s)

ds
, (26)

one finds

d

ds
H(φ, s) = −1

2

∫

dx dy D(s; x − y)

[

δ2H
δφ(x)δφ(y)

− δH
δφ(x)

δH
δφ(y)

]

−
∫

dx dy φ(x)L(s; x − y)
δH

δφ(y)
+

1

2
trL(s). (27)



Formal solution

Since the evolution equation is a first-order differential equation in s, the

form of the functional V(φ, s) for an initial value s0 of the parameter s

determines the solution for all s ≥ s0. From the very proof of equation

(24), its solution can be easily inferred:

e−V(φ,s) =
(

detD(s0, s)
)−1/2

∫

[dϕ] exp
[

−1
2

(

ϕK(s0, s)ϕ
)

− V(φ + ϕ, s0)
]

.

(28)

The equation implies that −V(φ, s) is the sum of the connected con-

tributions of the diagrams constructed with the propagator K−1(s0, s) =

∆(s) − ∆(s0) and interactions V(φ + ϕ, s0).

Only if initially V(φ, s0) is a quadratic form (a Gaussian model) it remains

so. However, if one adds, for example, a quartic term, then an infinite

number of terms of higher degrees will automatically be generated.



Field renormalization

In order to be able to find RG fixed-point solutions, it is necessary to intro-

duce a field renormalization. To prove the corresponding identities, we set

φ(x) =
√

Z(s)φ′(x), H(φ, s) = H′(φ′, s),

where Z(s) is an arbitrary differentiable function. We then define

η(s) =
d lnZ(s)

ds
. (29)

One then infers from the Hamiltonian flow equation the modified equation

(omitting some constant term)

d

ds
H(φ, s) = −1

2

∫

dx dy D(x − y)

[

δ2H
δφ(x)δφ(y)

− δH
δφ(x)

δH
δφ(y)

]

−
∫

dx dy φ(x)L(s; x − y)
δH

δφ(y)
+

1

2
η(s)

∫

dx φ(x)
δH

δφ(x)
. (30)



High-momentum mode integration and RGE

These equations can be applied to a situation where the partial integra-

tion over the field corresponds, in the Fourier representation, to a partial

integration over its high-momentum modes, which in position space also

corresponds to an integration over short-distance degrees of freedom.

In what follows, we specialize ∆ to a critical (massless) propagator. A

possible deviation from the critical theory is included in V(φ).

Cut-off parameter and propagator. In the preceding formalism, we now

identify s ≡ − ln Λ, where Λ is a large-momentum cut-off, which also repre-

sents the inverse of the microscopic scale. A variation of s then corresponds

to a dilatation of the parameter Λ.



We then choose a regularized propagator ∆Λ of the form

∆Λ(x) =

∫

ddk

(2π)d
e−ikx ∆̃Λ(k) with ∆̃Λ(k) =

C(k2/Λ2)

k2
.

The function C(t) is regular for t ≥ 0, positive, decreasing, goes to 1 for

t → 0 and goes to zero faster than any power for t → ∞. It suppresses the

field Fourier components corresponding to momenta much higher than Λ in

the field integral.

The Fourier transform of the derivative DΛ(x),

D̃Λ(k) = −Λ
∂∆̃Λ(k)

∂Λ
=

2

Λ2
C ′(k2/Λ2), (31)

has an essential property: it has no pole at k = 0 and thus it is not critical.



The function

DΛ(x) = −Λ
∂∆Λ(x)

∂Λ
=

∫

ddk

(2π)d
eikx D̃Λ(k) = Λd−2DΛ=1(Λx), (32)

thus decays for |x| → ∞ faster than any power if C(t) is smooth, exponen-

tially if C(t) is analytical. The propagator D(Λ0, Λ) = DΛ0
− DΛ, Λ0 > Λ,

whose inverse now appears in the field integral solving the flow equation,

shares this property.



RGE

With these assumptions and definitions, the flow equation for V(φ, Λ) be-

comes

Λ
d

dΛ
V(φ, Λ) =

1

2

∫

ddx ddy DΛ(x− y)

[

δ2V
δφ(x)δφ(y)

− δV
δφ(x)

δV
δφ(y)

]

. (33)

This equation being exact, one uses also the terminology exact renormal-

ization group.

Remarks.

Since DΛ(x) decreases faster than any power, if V(φ) is initially local, it

remains local, a property that becomes more apparent when one expands

the equation in powers of φ.

The equation differs from the abstract RGE by the property that the

scale parameter Λ appears explicitly through the function DΛ. We shall

later eliminate this explicit dependence.



Field Fourier components

In terms of the Fourier components φ̃(k) of the field,

φ(x) =

∫

ddk eikx φ̃(k) ⇔ φ̃(k) =

∫

ddx

(2π)d
e−ikx φ(x),

the equation becomes

Λ
d

dΛ
V(φ, Λ) =

1

2

∫

ddk

(2π)d
D̃Λ(k)

[

δ2V
δφ̃(k)δφ̃(−k)

− δV
δφ̃(k)

δV
δφ̃(−k)

]

. (34)

In the equation, locality translates into regularity of the Fourier compo-

nents. If the coefficients of the expansion of V(φ, Λ) in powers of φ̃, after

factorization of the δ-function, are regular functions for an initial value of

Λ = Λ0, they remain for Λ < Λ0 because D̃Λ(k) is a regular function of k.



Finally, the flow equation for the complete Hamiltonian expressed in

terms of Fourier components,

H(φ, Λ) =
1

2
(2π)d

∫

ddk φ̃(k)∆̃−1
Λ (k)φ̃(−k) + V(φ, Λ),

takes the form (omitting the term independent of φ)

Λ
d

dΛ
H(φ, Λ) =

1

2

∫

ddk

(2π)d
D̃Λ(k)

[

δ2H
δφ̃(k)δφ̃(−k)

− δH
δφ̃(k)

δH
δφ̃(−k)

]

+

∫

ddk

(2π)d
L̃Λ(k)

δH
δφ̃(k)

φ̃(k) (35)

with (equation (26))

L̃Λ(k) = D̃Λ(k)/∆̃Λ(k). (36)

In equation (35), we have implicitly subtracted both from H(φ, Λ) and from

the equation their values at φ = 0.



RGE: Standard form

After a field renormalization, required to be able to reach non-Gaussian

fixed points, the RGE take the form (30) with s = − lnΛ:

Λ
∂

∂Λ
H(φ, Λ)

=
1

2

∫

ddx ddy DΛ(x − y)

[

δ2H
δφ(x)δφ(y)

− δH
δφ(x)

δH
δφ(y)

]

+

∫

ddx ddy φ(x)LΛ(x − y)
δH

δφ(y)
+

η

2

∫

ddx φ(x)
δH

δφ(x)
. (37)

The function η is a priori arbitrary but with one restriction, it must depend

on Λ only through H(φ, Λ). It must be adjusted to ensure the existence of

fixed points.



The latter equation does not have a stationary Markovian form since DΛ

and LΛ depend explicitly on Λ:

LΛ(x) =
1

(2π)d

∫

ddk eikx L̃Λ(k) = ΛdL1(x), DΛ(x) = Λd−2D1(Λx).

To eliminate this dependence, we perform a Gaussian renormalization of

the form φ 7→ φ′ with

φ′(x) = Λ(2−d)/2φ(x/Λ).

In what follows, we omit the primes. Moreover, we introduce the dilatation

parameter λ = Λ0/Λ that relates the initial scale Λ0 to the running scale Λ

and thus

Λ
d

dΛ
= −λ

d

dλ
.



Then, the RGE take a form consistent with the general RG flow equation:

λ
d

dλ
H(φ, λ) = T [H(φ, λ)] ,

with

T [H] = −1

2

∫

ddx ddy D(x − y)

[

δ2H
δφ(x)δφ(y)

− δH
δφ(x)

δH
δφ(y)

]

−
∫

ddx
δH

δφ(x)

[

1

2
(d − 2 + η) +

∑

µ

xµ ∂

∂xµ

]

φ(x)

−
∫

ddx ddy L(x − y)
δH

δφ(x)
φ(y). (38)

This is the form more suitable for looking for fixed points. At a fixed

point, the right hand side vanishes for a suitably chosen renormalization of

the field φ, which determines the value of the exponent η.



Expansion in powers of the field: RGE in component form

If one expands H(φ, λ) (and then equation (38)) in powers of φ(x),

H(φ, λ) =
∑

n=0

1

n!

∫

∏

i

ddxi φ(xi)H(n)(x1, . . . , xn; λ),

one derives equations for the components. For n 6= 2 (D1 ≡ D),

λ
d

dλ
H(n)(xi; λ) =

(

1

2
n(d + 2 − η) +

∑

j,µ

xµ
j

∂

∂xµ
j

)

H(n)(xi; λ)

− 1

2

∫

ddx ddy D(x − y)

[

H(n+2)(x1, x2, . . . , xn, x, y; λ)

−
∑

I

H(l+1)(xi1 , . . . , xil
, x; λ)H(n−l+1)(xil+1

, . . . , xin
, y; λ)

]

,

where the set I ≡ {i1, i2, . . . , il} describes all distinct subsets of {1, 2, . . . , n}.



In the Fourier representation, the equations take the form

λ
d

dλ
H̃(n)(pi; λ) =

(

d − 1

2
n(d − 2 + η) −

∑

j,µ

pµ
j

∂

∂pµ
j

)

H̃(n)(pi; λ)

− 1

2

∫

ddk

(2π)d
D̃(k)H̃(n+2)(p1, p2, . . . , pn, k,−k; λ)

+
1

2

∑

I

D̃(p0)H̃(l+1)(pi1 , . . . , pil
, p0; λ)H̃(n−l+1)(pil+1

, . . . , pin
,−p0),(39)

where the momentum p0 is determined by total momentum conservation.



For n = 2, one finds an additional term in the equation:

λ
d

dλ
H(2)(x1; λ) =

(

d + 2 − η +
∑

µ

xµ
1

∂

∂xµ
1

)

H(2)(x1; λ)

− 1

2

∫

ddx ddy D(x − y)
[

H(4)(x1, 0, , x, y; λ) − 2H2)(x − x1; λ)H(2)(y; λ)
]

− 2

∫

ddy L(x1 − y)H(2)(y; λ).

One verifies explicitly that, except in the Gaussian example, all functions

H(n) are coupled. In the Fourier representation,

λ
d

dλ
H̃(2)(p; λ) =

(

2 − η −
∑

µ

pµ ∂

∂pµ

)

H̃(2)(p; λ) − 2L̃(p)H̃(2)(p; λ)

− 1

2

∫

ddk

(2π)d
D̃(k)H̃(4)(p,−p, k,−k; λ) + D̃(p)

(

H̃(2)(p; λ)
)2

. (40)



Perturbative solution

The flow equations is any of the different forms, can be solved perturbatively.

One first specifies the form of the Hamiltonian at the initial scale λ = 1, for

instance,

H(φ) = HG(φ) +
g

4!

∫

ddx φ4(x), u ≥ 0 .

In the finite form (28) of the RGE, one can then expand the field integral

in powers of the constant g. Alternatively, in the differential form, one first

expands in powers of the field φ. This leads to the infinite set of coupled

integro-differential equations (39,40) that one can integrate perturbatively

with the Ansatz that the terms in H(φ; λ) quadratic and quartic in φ are of

order g and the general term of degree 2n of order gn−1.

It is also possible to further expand the equations in powers of ε = 4 − d

and to look for fixed points. The results of the perturbative RG are then

recovered.



Fixed points and local flow

Once a fixed point H∗ has been determined, one can expand equation

(38) in the vicinity of the fixed point:

H(λ) = H∗ + E(λ).

One then obtains the linearized RGE

λ
d

dλ
E(λ) = L∗E(λ),

where the linear operator L∗, after an integration by parts, takes the form

L∗ =

∫

ddx φ(x)

[

1

2
(d + 2 − η) +

∑

µ

xµ ∂

∂xµ

]

δ

δφ(x)

+

∫

ddx ddy D(x − y)

[

−1

2

δ2

δφ(x)δφ(y)
+

δH∗

δφ(x)

δ

δφ(y)

]

−
∫

ddx ddy L(x − y)φ(x)
δ

δφ(y)
. (41)



We denote by ℓ the eigenvalues and Eℓ ≡ Eℓ(λ = 1) the eigenvectors of L∗:

L∗Eℓ = ℓEℓ , (42)

and thus

Eℓ(λ) = λℓEℓ(1).

Equation (42) can be written more explicitly in terms of the components

Ẽ
(n)
ℓ (pi) of Eℓ as

ℓẼ
(n)
ℓ (pi)

=

(

d − 1

2
n(d − 2 + η) −

∑

j

D̃(pj)∆̃
−1(pj) −

∑

j,µ

pµ
j

∂

∂pµ
j

)

Ẽ
(n)
ℓ (pi)

− 1

2

∫

ddk

(2π)d
D̃(k)Ẽ

(n+2)
ℓ (p1, p2, . . . , pn, k,−k)

+
∑

I

D̃(p0)Ẽ
(l+1)
ℓ (pi1 , . . . , pil

, p0)H̃(n−l+1)
∗ (pil+1

, . . . , pin
,−p0). (43)



Gaussian fixed point

At the Gaussian fixed point, the Hamiltonian is quadratic and η = 0. The

local flow at the fixed point is then governed by the operator

L∗ =

∫

ddx φ(x)

(

1

2
(d + 2) +

∑

µ

xµ ∂

∂xµ

)

δ

δφ(x)

− 1

2

∫

ddx ddy D(x − y)
δ2

δφ(x)δφ(y)
.

The eigenvectors are obtained by choosing H(n) vanishing for all n larger

than some value N . The coefficient of the term of degree N in φ then

satisfies the homogeneous equation

ℓẼ
(N)
ℓ (pi) =

(

d − 1

2
N(d − 2) −

∑

j,µ

pµ
j

∂

∂pµ
j

)

Ẽ
(N)
ℓ (pi).



This is an eigenvalue equation identical to the one obtained in the pertur-

bative RG. The solutions are homogeneous polynomials in the momenta.

If r is the degree in the variables pi, the eigenvalue is given by

ℓ = d − 1
2N(d − 2) − r .

The other coefficients H(n), n < N , are then entirely determined by the

equations





1

2
(N − n)(d − 2) + r −

∑

j,µ

pµ
j

∂

∂pµ
j



 Ẽ
(n)
ℓ (pi)

=
1

2

∫

ddk

(2π)d
D̃(k)Ẽ

(n+2)
ℓ (p1, p2, . . . , pn, k,−k). (44)



One might be surprised by the occurrence of these additional terms. In

fact, one can verify that if one sets

E(φ) = exp

[

−1

2

∫

ddx ddy ∆(x − y)
δ2

δφ(x)δφ(y)

]

Ω(φ),

the functional Ω(φ) satisfies the simpler eigenvalue equation

ℓ Ωℓ(φ) =

∫

ddx φ(x)

[

1

2
(d + 2) +

∑

µ

xµ ∂

∂xµ

]

δ

δφ(x)
Ωℓ(φ),

whose solutions are the simple monomials On,k(φ, x) found in the pertur-

bative analysis of the stability of the Gaussian fixed point. For example, for

Ωℓ(φ) =

∫

ddx φm(x),

after some algebra, one verifies

ℓ = d − m(d − 2)/2 .



The linear operator that transforms Ω(φ) into E(φ),

exp

[

−1

2

∫

ddx ddy ∆(x − y)
δ2

δφ(x)δφ(y)

]

,

replaces all monomials in φ that contribute to Ω by their normal products.

We recall that the normal product of a E(N)(φ) of a monomial of degree

N in φ is a polynomial with the same term of order N and is such that, for

all n < N , the Gaussian correlation functions

〈

n
∏

i=1

φ(xi)E
(N)(φ)

〉

with the measure e−H∗ vanish. Let us point out that the definition of

normal products depends explicitly on the choice of the Gaussian measure.



Beyond the Gaussian model: perturbative solution

In dimension 4 (and then in d = 4− ε), a non-trivial theory can be defined

and parametrized, for example, in terms of g(λ), the value of H̃(4)(pi, λ) at

p1 = · · · = p4 = 0:

g(λ) ≡ H̃(4)(pi = 0, λ). (45)

One then introduces the function β(g) defined by

λ
dg

dλ
= −β

(

g(λ)
)

. (46)

This allows substituting in the left hand side of the flow equation

λ
d

dλ
= β(g)

d

dg
.

One then solves perturbatively the flow equations, with appropriate bound-

ary conditions.



All other interactions are then determined perturbatively as functions of

g, under the assumption that they are at least of order g2. They become

implicit functions of λ through g(λ). One suppresses in this way all correc-

tions due to irrelevant operators, keeping only the contributions due to the

marginal operator. The Hamiltonian flow, like in the perturbative renormal-

ization group is reduced the flow of g(λ), but the fixed point Hamiltonian

is much more complicate, since all subleading corrections to the leading

behaviour are suppressed.

The function η(g) is determined by the condition

∂

∂p2
H̃(2)(p; g)

∣

∣

∣

∣

p=0

= 1 ⇒ ∂

∂p2
Ṽ(2)(p; g)

∣

∣

∣

∣

p=0

= 0 , (47)

which suppresses the redundant operator that corresponds to a change of

normalization of the field.

The two conditions (45), (47) replace the renormalization conditions of

the usual renormalization theory.



Final remarks

In practice, the FRG has been used as a starting point for various non-

perturbative approximations, reducing the functional equations to partial

differential equations. Quite interesting results have been obtained. The

main problem is that none of these approximation scheme has a systematic

character, or when a systematic method is claimed, the next approximation

is out of reach.

A further practical remark is that since the effective interaction V(φ)

appears as the generating functional of some kind of connected Feynman

diagrams, an additional simplification has been obtained by introducing its

Legendre transform, which contains only one-line irreducible diagrams.


